A higher-order fuzzy neural network for modeling financial time series

Author(s):  
Massimo Panella ◽  
Luca Liparulo ◽  
Andrea Proietti
Author(s):  
David R. Selviah ◽  
Janti Shawash

Generalized correlation higher order neural network designs are developed. Their performance is compared with that of first order networks, conventional higher order neural network designs, and higher order linear regression networks for financial time series prediction. The correlation higher order neural network design is shown to give the highest accuracy for prediction of stock market share prices and share indices. The simulations compare the performance for three different training algorithms, stationary versus non-stationary input data, different numbers of neurons in the hidden layer and several generalized correlation higher order neural network designs. Generalized correlation higher order linear regression networks are also introduced and two designs are shown by simulation to give good correct direction prediction and higher prediction accuracies, particularly for long-term predictions, than other linear regression networks for the prediction of inter-bank lending risk Libor and Swap interest rate yield curves. The simulations compare the performance for different input data sample lag lengths.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Tianle Zhou ◽  
Chaoyi Chu ◽  
Chaobin Xu ◽  
Weihao Liu ◽  
Hao Yu

In this study, a new idea is proposed to analyze the financial market and detect price fluctuations, by integrating the technology of PSR (phase space reconstruction) and SOM (self organizing maps) neural network algorithms. The prediction of price and index in the financial market has always been a challenging and significant subject in time-series studies, and the prediction accuracy or the sensitivity of timely warning price fluctuations plays an important role in improving returns and avoiding risks for investors. However, it is the high volatility and chaotic dynamics of financial time series that constitute the most significantly influential factors affecting the prediction effect. As a solution, the time series is first projected into a phase space by PSR, and the phase tracks are then sliced into several parts. SOM neural network is used to cluster the phase track parts and extract the linear components in each embedded dimension. After that, LSTM (long short-term memory) is used to test the results of clustering. When there are multiple linear components in the m-dimension phase point, the superposition of these linear components still remains the linear property, and they exhibit order and periodicity in phase space, thereby providing a possibility for time series prediction. In this study, the Dow Jones index, Nikkei index, China growth enterprise market index and Chinese gold price are tested to determine the validity of the model. To summarize, the model has proven itself able to mark the unpredictable time series area and evaluate the unpredictable risk by using 1-dimension time series data.


2020 ◽  
Vol 12 (6) ◽  
pp. 21-32
Author(s):  
Muhammad Zulqarnain ◽  
◽  
Rozaida Ghazali ◽  
Muhammad Ghulam Ghouse ◽  
Yana Mazwin Mohmad Hassim ◽  
...  

Financial time-series prediction has been long and the most challenging issues in financial market analysis. The deep neural networks is one of the excellent data mining approach has received great attention by researchers in several areas of time-series prediction since last 10 years. “Convolutional neural network (CNN) and recurrent neural network (RNN) models have become the mainstream methods for financial predictions. In this paper, we proposed to combine architectures, which exploit the advantages of CNN and RNN simultaneously, for the prediction of trading signals. Our model is essentially presented to financial time series predicting signals through a CNN layer, and directly fed into a gated recurrent unit (GRU) layer to capture long-term signals dependencies. GRU model perform better in sequential learning tasks and solve the vanishing gradients and exploding issue in standard RNNs. We evaluate our model on three datasets for stock indexes of the Hang Seng Indexes (HSI), the Deutscher Aktienindex (DAX) and the S&P 500 Index range 2008 to 2016, and associate the GRU-CNN based approaches with the existing deep learning models. Experimental results present that the proposed GRU-CNN model obtained the best prediction accuracy 56.2% on HIS dataset, 56.1% on DAX dataset and 56.3% on S&P500 dataset respectively.


Sign in / Sign up

Export Citation Format

Share Document