scholarly journals Detecting Predictable Segments of Chaotic Financial Time Series via Neural Network

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 823
Author(s):  
Tianle Zhou ◽  
Chaoyi Chu ◽  
Chaobin Xu ◽  
Weihao Liu ◽  
Hao Yu

In this study, a new idea is proposed to analyze the financial market and detect price fluctuations, by integrating the technology of PSR (phase space reconstruction) and SOM (self organizing maps) neural network algorithms. The prediction of price and index in the financial market has always been a challenging and significant subject in time-series studies, and the prediction accuracy or the sensitivity of timely warning price fluctuations plays an important role in improving returns and avoiding risks for investors. However, it is the high volatility and chaotic dynamics of financial time series that constitute the most significantly influential factors affecting the prediction effect. As a solution, the time series is first projected into a phase space by PSR, and the phase tracks are then sliced into several parts. SOM neural network is used to cluster the phase track parts and extract the linear components in each embedded dimension. After that, LSTM (long short-term memory) is used to test the results of clustering. When there are multiple linear components in the m-dimension phase point, the superposition of these linear components still remains the linear property, and they exhibit order and periodicity in phase space, thereby providing a possibility for time series prediction. In this study, the Dow Jones index, Nikkei index, China growth enterprise market index and Chinese gold price are tested to determine the validity of the model. To summarize, the model has proven itself able to mark the unpredictable time series area and evaluate the unpredictable risk by using 1-dimension time series data.

2016 ◽  
Vol 7 (1) ◽  
pp. 16-32 ◽  
Author(s):  
Rajashree Dash ◽  
Pradipta Kishore Dash

In this paper a predictor model using Legendre Neural Network is proposed for one day ahead prediction of financial time series data. The Legendre Neural Network (LENN) is a single layer structure that possess faster convergence rate and reduced computational complexity by increasing the dimensionality of the input pattern with a set of linearly independent nonlinear functions. The parameters of the LENN model are estimated using a Moderate Random Search Particle Swarm Optimization Method (HMRPSO). The HMRPSO is a variant of PSO that uses a moderate random search method to enhance the global search ability of particles and increases their convergence rates by focusing on valuable search space regions. Training LENN using HMRPSO has also been compared with Particle Swarm Optimization (PSO) and Differential Evolution (DE) based learning of LENN for predicting the Bombay Stock Exchange and S&P 500 data sets.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dehui Zhou

Since the birth of the financial market, the industry and academia want to find a method to accurately predict the future trend of the financial market. The ultimate goal of this paper is to build a mathematical model that can effectively predict the short-term trend of the financial time series. This paper presents a new combined forecasting model: its name is Financial Time Series-Empirical Mode Decomposition-Principal Component Analysis-Artificial Neural Network (FEPA) model. This model is mainly composed of three components, which are based on financial time series special empirical mode decomposition (FTA-EMD), principal component analysis (PCA), and artificial neural network. This model is mainly used to model and predict the complex financial time series. At the same time, the model also predicts the stock market index and exchange rate and studies the hot fields of the financial market. The results show that the empirical mode decomposition back propagation neural network (EMD-BPNN) model has better prediction effect than the autoregressive comprehensive moving average model (ARIMA), which is mainly reflected in the accuracy of prediction. This shows that the prediction method of decomposing and recombining nonlinear and nonstationary financial time series can effectively improve the prediction accuracy. When predicting the closing price of Australian stock index, the hit rate (DS) of the FEPA model decomposition method is 72.22%, 10.86% higher than the EMD-BPNN model and 3.23% higher than the EMD-LPP-BPNN model. When the FEPA model predicts the Australian stock index, the hit rate is improved to a certain extent, and the effect is better than other models.


2021 ◽  
Vol 11 (9) ◽  
pp. 3876
Author(s):  
Weiming Mai ◽  
Raymond S. T. Lee

Chart patterns are significant for financial market behavior analysis. Lots of approaches have been proposed to detect specific patterns in financial time series data, most of them can be categorized as distance-based or training-based. In this paper, we applied a trainable continuous Hopfield Neural Network for financial time series pattern matching. The Perceptually Important Points (PIP) segmentation method is used as the data preprocessing procedure to reduce the fluctuation. We conducted a synthetic data experiment on both high-level noisy data and low-level noisy data. The result shows that our proposed method outperforms the Template Based (TB) and Euclidean Distance (ED) and has an advantage over Dynamic Time Warping (DTW) in terms of the processing time. That indicates the Hopfield network has a potential advantage over other distance-based matching methods.


2020 ◽  
Vol 12 (6) ◽  
pp. 21-32
Author(s):  
Muhammad Zulqarnain ◽  
◽  
Rozaida Ghazali ◽  
Muhammad Ghulam Ghouse ◽  
Yana Mazwin Mohmad Hassim ◽  
...  

Financial time-series prediction has been long and the most challenging issues in financial market analysis. The deep neural networks is one of the excellent data mining approach has received great attention by researchers in several areas of time-series prediction since last 10 years. “Convolutional neural network (CNN) and recurrent neural network (RNN) models have become the mainstream methods for financial predictions. In this paper, we proposed to combine architectures, which exploit the advantages of CNN and RNN simultaneously, for the prediction of trading signals. Our model is essentially presented to financial time series predicting signals through a CNN layer, and directly fed into a gated recurrent unit (GRU) layer to capture long-term signals dependencies. GRU model perform better in sequential learning tasks and solve the vanishing gradients and exploding issue in standard RNNs. We evaluate our model on three datasets for stock indexes of the Hang Seng Indexes (HSI), the Deutscher Aktienindex (DAX) and the S&P 500 Index range 2008 to 2016, and associate the GRU-CNN based approaches with the existing deep learning models. Experimental results present that the proposed GRU-CNN model obtained the best prediction accuracy 56.2% on HIS dataset, 56.1% on DAX dataset and 56.3% on S&P500 dataset respectively.


Sign in / Sign up

Export Citation Format

Share Document