Constrained Extreme Learning Machine: A novel highly discriminative random feedforward neural network

Author(s):  
Wentao Zhu ◽  
Jun Miao ◽  
Laiyun Qing
2014 ◽  
Vol 554 ◽  
pp. 431-435 ◽  
Author(s):  
Ahmad Nooraziah ◽  
V. Janahiraman Tiagrajah

Prediction model allows the machinist to determine the values of the cutting performance before machining. According to literature, various modeling techniques have been investigated and applied to predict the cutting parameters. Recently, Extreme Learning Machine (ELM) has been introduced as the alternative to overcome the limitation from the previous methods. ELM has similar structure as single hidden layer feedforward neural network with analytically to determine output weight. By comparing to Response Surface Methodology, Support Vector Machine and Neural Network, this paper proposed the prediction of surface roughness using ELM method. The result indicates that ELM can yield satisfactory solution for predicting surface roughness in term of training speed and parameter selection.


2019 ◽  
Vol 124 (1272) ◽  
pp. 271-295 ◽  
Author(s):  
H. O. Verma ◽  
N. K. Peyada

ABSTRACTThe research paper addresses the problem of estimating aerodynamic parameters using a Gauss-Newton-based optimisation method. The process of the optimisation method lies on the principle of minimising the residual error between the measured and simulated responses of the system. Usually, the simulated response is obtained by integrating the dynamic equations of the system, which is found to be susceptible to the initial values, and the integration method. With the advent of the feedforward neural network, the data-driven regression methods have been widely used for identification of the system. Among them, a variant of feedforward neural network, extreme learning machine, which has proven the performance in terms of computational cost, generalisation, and so forth, has been addressed to predict the responses in the present study. The real flight data of longitudinal and lateral-directional motion have been considered to estimate their respective aerodynamic parameters. Furthermore, the estimates have been validated with the values of the classical estimation methods, such as the equation-error and filter-error methods. The sample standard deviations of the estimates demonstrate the effectiveness of the proposed method. Lastly, the proof-of-match exercise has been conducted with the other set of flight data to validate the estimated parameters.


2014 ◽  
Vol 128 ◽  
pp. 128-135 ◽  
Author(s):  
Hong-Gui Han ◽  
Li-Dan Wang ◽  
Jun-Fei Qiao

2014 ◽  
Vol 129 ◽  
pp. 428-436 ◽  
Author(s):  
Tiago Matias ◽  
Francisco Souza ◽  
Rui Araújo ◽  
Carlos Henggeler Antunes

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jie Wu ◽  
Xiaojuan Chen ◽  
Zhaohua Zhang

Insulated Gate Bipolar Transistor (IGBT) is a high-power switch in the field of power electronics. Its reliability is closely related to system stability. Once failure occurs, it may cause irreparable loss. Therefore, potential fault diagnosis methods of IGBT devices are studied in this paper, and their classification accuracy is tested. Due to the shortcomings of incomplete data application in the traditional method of characterizing the device state based on point frequency parameters, a fault diagnosis method based on full frequency threshold screening was proposed in this paper, and its classification accuracy was detected by the Extreme Learning Machine (ELM) algorithm. The randomly generated input layer weight ω and hidden layer deviation lead to the change of output layer weight β and then affect the overall output result. In view of the errors and instability caused by this randomness, an improved Finite Impulse Response Filter ELM (FIR-ELM) training algorithm is proposed. The filtering technique is used to initialize the input weights of the Single Hidden Layer Feedforward Neural Network (SLFN). The hidden layer of SLFN is used as the preprocessor to achieve the minimum output error. To reduce the structural risk and empirical risk of SLFN, the simulation results of 300 groups of spectral data show that the improved FIR-ELM algorithm significantly improves the training accuracy and has good robustness compared with the traditional extreme learning machine algorithm.


Sign in / Sign up

Export Citation Format

Share Document