scholarly journals Biomedical Named-Entity Recognition by Hierarchically Fusing BioBERT Representations and Deep Contextual-Level Word-Embedding

Author(s):  
Usman Naseem ◽  
Katarzyna Musial ◽  
Peter Eklund ◽  
Mukesh Prasad
2021 ◽  
Vol 7 ◽  
pp. e384
Author(s):  
Rigo E. Ramos-Vargas ◽  
Israel Román-Godínez ◽  
Sulema Torres-Ramos

Increased interest in the use of word embeddings, such as word representation, for biomedical named entity recognition (BioNER) has highlighted the need for evaluations that aid in selecting the best word embedding to be used. One common criterion for selecting a word embedding is the type of source from which it is generated; that is, general (e.g., Wikipedia, Common Crawl), or specific (e.g., biomedical literature). Using specific word embeddings for the BioNER task has been strongly recommended, considering that they have provided better coverage and semantic relationships among medical entities. To the best of our knowledge, most studies have focused on improving BioNER task performance by, on the one hand, combining several features extracted from the text (for instance, linguistic, morphological, character embedding, and word embedding itself) and, on the other, testing several state-of-the-art named entity recognition algorithms. The latter, however, do not pay great attention to the influence of the word embeddings, and do not facilitate observing their real impact on the BioNER task. For this reason, the present study evaluates three well-known NER algorithms (CRF, BiLSTM, BiLSTM-CRF) with respect to two corpora (DrugBank and MedLine) using two classic word embeddings, GloVe Common Crawl (of the general type) and Pyysalo PM + PMC (specific), as unique features. Furthermore, three contextualized word embeddings (ELMo, Pooled Flair, and Transformer) are compared in their general and specific versions. The aim is to determine whether general embeddings can perform better than specialized ones on the BioNER task. To this end, four experiments were designed. In the first, we set out to identify the combination of classic word embedding, NER algorithm, and corpus that results in the best performance. The second evaluated the effect of the size of the corpus on performance. The third assessed the semantic cohesiveness of the classic word embeddings and their correlation with respect to several gold standards; while the fourth evaluates the performance of general and specific contextualized word embeddings on the BioNER task. Results show that the classic general word embedding GloVe Common Crawl performed better in the DrugBank corpus, despite having less word coverage and a lower internal semantic relationship than the classic specific word embedding, Pyysalo PM + PMC; while in the contextualized word embeddings the best results are presented in the specific ones. We conclude, therefore, when using classic word embeddings as features on the BioNER task, the general ones could be considered a good option. On the other hand, when using contextualized word embeddings, the specific ones are the best option.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kanix Wang ◽  
Robert Stevens ◽  
Halima Alachram ◽  
Yu Li ◽  
Larisa Soldatova ◽  
...  

AbstractMachine reading (MR) is essential for unlocking valuable knowledge contained in millions of existing biomedical documents. Over the last two decades1,2, the most dramatic advances in MR have followed in the wake of critical corpus development3. Large, well-annotated corpora have been associated with punctuated advances in MR methodology and automated knowledge extraction systems in the same way that ImageNet4 was fundamental for developing machine vision techniques. This study contributes six components to an advanced, named entity analysis tool for biomedicine: (a) a new, Named Entity Recognition Ontology (NERO) developed specifically for describing textual entities in biomedical texts, which accounts for diverse levels of ambiguity, bridging the scientific sublanguages of molecular biology, genetics, biochemistry, and medicine; (b) detailed guidelines for human experts annotating hundreds of named entity classes; (c) pictographs for all named entities, to simplify the burden of annotation for curators; (d) an original, annotated corpus comprising 35,865 sentences, which encapsulate 190,679 named entities and 43,438 events connecting two or more entities; (e) validated, off-the-shelf, named entity recognition (NER) automated extraction, and; (f) embedding models that demonstrate the promise of biomedical associations embedded within this corpus.


2020 ◽  
Author(s):  
Usman Naseem ◽  
Matloob Khushi ◽  
Vinay Reddy ◽  
Sakthivel Rajendran ◽  
Imran Razzak ◽  
...  

Abstract Background: In recent years, with the growing amount of biomedical documents, coupled with advancement in natural language processing algorithms, the research on biomedical named entity recognition (BioNER) has increased exponentially. However, BioNER research is challenging as NER in the biomedical domain are: (i) often restricted due to limited amount of training data, (ii) an entity can refer to multiple types and concepts depending on its context and, (iii) heavy reliance on acronyms that are sub-domain specific. Existing BioNER approaches often neglect these issues and directly adopt the state-of-the-art (SOTA) models trained in general corpora which often yields unsatisfactory results. Results: We propose biomedical ALBERT (A Lite Bidirectional Encoder Representations from Transformers for Biomedical Text Mining) - bioALBERT - an effective domain-specific pre-trained language model trained on huge biomedical corpus designed to capture biomedical context-dependent NER. We adopted self-supervised loss function used in ALBERT that targets on modelling inter-sentence coherence to better learn context-dependent representations and incorporated parameter reduction strategies to minimise memory usage and enhance the training time in BioNER. In our experiments, BioALBERT outperformed comparative SOTA BioNER models on eight biomedical NER benchmark datasets with four different entity types. The performance is increased for; (i) disease type corpora by 7.47% (NCBI-disease) and 10.63% (BC5CDR-disease); (ii) drug-chem type corpora by 4.61% (BC5CDR-Chem) and 3.89 (BC4CHEMD); (iii) gene-protein type corpora by 12.25% (BC2GM) and 6.42% (JNLPBA); and (iv) Species type corpora by 6.19% (LINNAEUS) and 23.71% (Species-800) is observed which leads to a state-of-the-art results. Conclusions: The performance of proposed model on four different biomedical entity types shows that our model is robust and generalizable in recognizing biomedical entities in text. We trained four different variants of BioALBERT models which are available for the research community to be used in future research.


Sign in / Sign up

Export Citation Format

Share Document