Modified Grey Wolf Optimizer based Maximum Entropy Clustering Algorithm*

Author(s):  
Jia Cai ◽  
Guanglong Xu ◽  
Wenwen Ye
Author(s):  
Amolkumar Narayan Jadhav ◽  
Gomathi N.

The widespread application of clustering in various fields leads to the discovery of different clustering techniques in order to partition multidimensional data into separable clusters. Although there are various clustering approaches used in literature, optimized clustering techniques with multi-objective consideration are rare. This paper proposes a novel data clustering algorithm, Enhanced Kernel-based Exponential Grey Wolf Optimization (EKEGWO), handling two objectives. EKEGWO, which is the extension of KEGWO, adopts weight exponential functions to improve the searching process of clustering. Moreover, the fitness function of the algorithm includes intra-cluster distance and the inter-cluster distance as an objective to provide an optimum selection of cluster centroids. The performance of the proposed technique is evaluated by comparing with the existing approaches PSC, mPSC, GWO, and EGWO for two datasets: banknote authentication and iris. Four metrics, Mean Square Error (MSE), F-measure, rand and jaccord coefficient, estimates the clustering efficiency of the algorithm. The proposed EKEGWO algorithm can attain an MSE of 837, F-measure of 0.9657, rand coefficient of 0.8472, jaccord coefficient of 0.7812, for the banknote dataset.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 820 ◽  
Author(s):  
Xiaoqiang Zhao ◽  
Shaoya Ren ◽  
Heng Quan ◽  
Qiang Gao

Wireless sensor network (WSN) nodes are devices with limited power, and rational utilization of node energy and prolonging the network lifetime are the main objectives of the WSN’s routing protocol. However, irrational considerations of heterogeneity of node energy will lead to an energy imbalance between nodes in heterogeneous WSNs (HWSNs). Therefore, in this paper, a routing protocol for HWSNs based on the modified grey wolf optimizer (HMGWO) is proposed. First, the protocol selects the appropriate initial clusters by defining different fitness functions for heterogeneous energy nodes; the nodes’ fitness values are then calculated and treated as initial weights in the GWO. At the same time, the weights are dynamically updated according to the distance between the wolves and their prey and coefficient vectors to improve the GWO’s optimization ability and ensure the selection of the optimal cluster heads (CHs). The experimental results indicate that the network lifecycle of the HMGWO protocol improves by 55.7%, 31.9%, 46.3%, and 27.0%, respectively, compared with the stable election protocol (SEP), distributed energy-efficient clustering algorithm (DEEC), modified SEP (M-SEP), and fitness-value-based improved GWO (FIGWO) protocols. In terms of the power consumption and network throughput, the HMGWO is also superior to other protocols.


2018 ◽  
Vol 29 (1) ◽  
pp. 814-830 ◽  
Author(s):  
Hasan Rashaideh ◽  
Ahmad Sawaie ◽  
Mohammed Azmi Al-Betar ◽  
Laith Mohammad Abualigah ◽  
Mohammed M. Al-laham ◽  
...  

Abstract Text clustering problem (TCP) is a leading process in many key areas such as information retrieval, text mining, and natural language processing. This presents the need for a potent document clustering algorithm that can be used effectively to navigate, summarize, and arrange information to congregate large data sets. This paper encompasses an adaptation of the grey wolf optimizer (GWO) for TCP, referred to as TCP-GWO. The TCP demands a degree of accuracy beyond that which is possible with metaheuristic swarm-based algorithms. The main issue to be addressed is how to split text documents on the basis of GWO into homogeneous clusters that are sufficiently precise and functional. Specifically, TCP-GWO, or referred to as the document clustering algorithm, used the average distance of documents to the cluster centroid (ADDC) as an objective function to repeatedly optimize the distance between the clusters of the documents. The accuracy and efficiency of the proposed TCP-GWO was demonstrated on a sufficiently large number of documents of variable sizes, documents that were randomly selected from a set of six publicly available data sets. Documents of high complexity were also included in the evaluation process to assess the recall detection rate of the document clustering algorithm. The experimental results for a test set of over a part of 1300 documents showed that failure to correctly cluster a document occurred in less than 20% of cases with a recall rate of more than 65% for a highly complex data set. The high F-measure rate and ability to cluster documents in an effective manner are important advances resulting from this research. The proposed TCP-GWO method was compared to the other well-established text clustering methods using randomly selected data sets. Interestingly, TCP-GWO outperforms the comparative methods in terms of precision, recall, and F-measure rates. In a nutshell, the results illustrate that the proposed TCP-GWO is able to excel compared to the other comparative clustering methods in terms of measurement criteria, whereby more than 55% of the documents were correctly clustered with a high level of accuracy.


2020 ◽  
Vol 35 (1) ◽  
pp. 63-79
Author(s):  
Ramin Ahmadi ◽  
Gholamhossein Ekbatanifard ◽  
Peyman Bayat

2017 ◽  
Vol 115 ◽  
pp. 415-422 ◽  
Author(s):  
Shubham Kapoor ◽  
Irshad Zeya ◽  
Chirag Singhal ◽  
Satyasai Jagannath Nanda

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1581
Author(s):  
Wenqiang Zhu ◽  
Jiang Guo ◽  
Guo Zhao ◽  
Bing Zeng

The hybrid renewable energy system is a promising and significant technology for clean and sustainable island power supply. Among the abundant ocean energy sources, tidal current energy appears to be very valuable due to its excellent predictability and stability, particularly compared with the intermittent wind and solar energy. In this paper, an island hybrid energy microgrid composed of photovoltaic, wind, tidal current, battery and diesel is constructed according to the actual energy sources. A sizing optimization method based on improved multi-objective grey wolf optimizer (IMOGWO) is presented to optimize the hybrid energy system. The proposed method is applied to determine the optimal system size, which is a multi-objective problem including the minimization of annualized cost of system (CACS) and deficiency of power supply probability (DPSP). MATLAB software is utilized to program and simulate the hybrid energy system. Optimization results confirm that IMOGWO is feasible to optimally size the system, and the energy management strategy effectively matches the requirements of system operation. Furthermore, comparison of hybrid systems with and without tidal current turbines is undertaken to confirm that the utilization of tidal current turbines can contribute to enhancing system reliability and reducing system investment, especially in areas with abundant tidal energy sources.


Fuel ◽  
2020 ◽  
Vol 273 ◽  
pp. 117784 ◽  
Author(s):  
Erol Ileri ◽  
Aslan Deniz Karaoglan ◽  
Sener Akpinar

Sign in / Sign up

Export Citation Format

Share Document