Averaging Area for Transmitted Power Density Correlated to Temperature Elevation on Human Skin Surface due to RF Exposure at 60 GHz

Author(s):  
Kun Li ◽  
Kensuke Sasaki ◽  
Soichi Watanabe ◽  
Kanako Wake
IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 77665-77674 ◽  
Author(s):  
Daisuke Funahashi ◽  
Akimasa Hirata ◽  
Sachiko Kodera ◽  
Kenneth R. Foster

1963 ◽  
Vol 41 (5) ◽  
pp. 265-268 ◽  
Author(s):  
Thomas J Cook ◽  
Allan L Lorincz ◽  
Alan R Spector

Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 700
Author(s):  
Yohannes Abere Ambaw ◽  
Martin P. Pagac ◽  
Antony S. Irudayaswamy ◽  
Manfred Raida ◽  
Anne K. Bendt ◽  
...  

Malassezia are common components of human skin, and as the dominant human skin eukaryotic microbe, they take part in complex microbe–host interactions. Other phylogenetically related fungi (including within Ustilagomycotina) communicate with their plant host through bioactive oxygenated polyunsaturated fatty acids, generally known as oxylipins, by regulating the plant immune system to increase their virulence. Oxylipins are similar in structure and function to human eicosanoids, which modulate the human immune system. This study reports the development of a highly sensitive mass-spectrometry-based method to capture and quantify bioactive oxygenated polyunsaturated fatty acids from the human skin surface and in vitro Malassezia cultures. It confirms that Malassezia are capable of synthesizing eicosanoid-like lipid mediators in vitro in a species dependent manner, many of which are found on human skin. This method enables sensitive identification and quantification of bioactive lipid mediators from human skin that may be derived from metabolic pathways shared between skin and its microbial residents. This enables better cross-disciplinary and detailed studies to dissect the interaction between Malassezia and human skin, and to identify potential intervention points to promote or abrogate inflammation and to improve human skin health.


Sign in / Sign up

Export Citation Format

Share Document