Optical power optimization considering the optical amplifier response curve on stimulated Brillouin scattering suppression

Author(s):  
G. Vilela de Faria ◽  
J.P. von der Weid
F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 521
Author(s):  
Soon Heng Yeap ◽  
Siamak Dawazdah Emami ◽  
Hairul Azhar Abdul-Rashid

Stimulated Brillouin scattering (SBS) is useful, among others for generating slow light, sensing and amplification. SBS was previously viewed as a poor method due to the limitation on optical power in high-powered photonic applications. However, considering the many possible applications using SBS, it is now of interest to enhance SBS in areas of Brillouin frequency shift together with Brillouin Gain. A numerical model, using a fully vectorial approach, by employing the finite element method, was developed to investigate methods for enhancing SBS in optical fiber. This paper describes the method related to the numerical model and discusses the analysis between the interactions of horizontal, shear and hybrid acoustic modes; and optical modes in optical fiber. Two case studies were used to demonstrate this. Based on this numerical model, we report the influence of core radius, clad radius and effective refractive index on the Brillouin frequency shift and gain. We observe the difference of Brillouin shift frequency between a normal silica optical fiber and that of a tapered fiber where nonlinearities are higher. Also observed, the different core radii used and their respective Brillouin shift. For future work, the COMSOL model can also be used for the following areas of research, including simulating “surface Brillouin shift” and also to provide in-sights to the Brillouin shift frequency vB of various structures of waveguides, e.g circular, and triangular, and also to examine specialty fibers, e.g. Thulium and Chalcogenide doped fibers, and their effects on Brillouin shift frequency.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4731 ◽  
Author(s):  
Sanggwon Song ◽  
Aeri Jung ◽  
Kyunghwan Oh

With the rapid advancement of Yb-doped fiber lasers (YDFL) whose output wavelength is near 1060 nm, passive fibers to carry the high optical power at the spectral range are also gaining significant importance. Stimulated Brillouin scattering (SBS) in the passive fibers connecting components in the lasers, especially, can set a fundamental limit in the power handling of YDFL systems. We experimentally analyzed SBS characteristics of passive single mode fibers (SMF) at a wavelength of 1060 nm. For two types of SMFs (Corning HI1060 and HI1060Flex), the Brillouin frequency (νΒ), its linewidth (ΔνΒ), and their variations with respect to the input laser power and the surrounding temperature were experimentally measured, along with the SBS threshold power (Pth). The optical heterodyne detection method was used to identify temperature-dependent SBS characteristics of fibers, and we found SMFs at λ = 1060 nm showed a temperature sensitivity in SBS frequency shift more than 40% higher than in conventional SMFs operating in C-band. Detailed procedures to measure the SBS properties are explained, and a new potential of 1060 nm SMF as a distributed temperature sensor is also discussed.


2007 ◽  
Vol 4 (1) ◽  
pp. 142-146
Author(s):  
Baghdad Science Journal

We demonstrate the results of a mathematical model for investigation the nonlinear Stimulated Brillouin Scattering (SBS), which can be employed to achieve high optical amplifier. The SBS is created by interaction between the incident We demonstrate the results of a mathematical model for investigation the nonlinear Stimulated Brillouin Scattering (SBS), which can be employed to achieve high optical amplifier. The SBS is created by interaction between the incident light and the acoustic vibration fiber. The design criteria and the amplification characteristic of the Brillouin amplifier is demonstrated and discussed for fiber Brillouin amplifier using different pump power with different fiber length. The results show, high Brillouin gain can be achieved with high pump power and long effective fiber length.and the acoustic vibration fiber. The design criteria and the amplification characteristic of the Brillouin amplifier is demonstrated and discussed for fiber Brillouin amplifier using different pump power with different fiber length. The results show, high Brillouin gain can be achieved with high pump power and long effective fiber length.


2006 ◽  
Vol 15 (10) ◽  
pp. 2343-2346 ◽  
Author(s):  
Ge Zi-Ming ◽  
Lü Zhi-Wei ◽  
Cai Jun-Wei ◽  
Ao Shu-Yan ◽  
Luo You-Hua

Sign in / Sign up

Export Citation Format

Share Document