Interference-aware power allocation in soft decision fusion (SDF) based cooperative spectrum sensing

Author(s):  
Deepa Das ◽  
Susmita Das
2013 ◽  
Vol 61 (8) ◽  
pp. 1931-1943 ◽  
Author(s):  
Weijia Han ◽  
Jiandong Li ◽  
Zan Li ◽  
Jiangbo Si ◽  
Yan Zhang

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1038 ◽  
Author(s):  
Noor Gul ◽  
Muhammad Sajjad Khan ◽  
Su Min Kim ◽  
Junsu Kim ◽  
Atif Elahi ◽  
...  

Cooperative spectrum sensing (CSS) has the ability to accurately identify the activities of the primary users (PUs). As the secondary users’ (SUs) sensing performance is disturbed in the fading and shadowing environment, therefore the CSS is a suitable choice to achieve better sensing results compared to individual sensing. One of the problems in the CSS occurs due to the participation of malicious users (MUs) that report false sensing data to the fusion center (FC) to misguide the FC’s decision about the PUs’ activity. Out of the different categories of MUs, Always Yes (AY), Always No (AN), Always Opposite (AO) and Random Opposite (RO) are of high interest these days in the literature. Recently, high sensing performance for the CSS can be achieved using machine learning techniques. In this paper, boosted trees algorithm (BTA) has been proposed for obtaining reliable identification of the PU channel, where the SUs can access the PU channel opportunistically with minimum disturbances to the licensee. The proposed BTA mitigates the spectrum sensing data falsification (SSDF) effects of the AY, AN, AO and RO categories of the MUs. BTA is an ensemble method for solving spectrum sensing problems using different classifiers. It boosts the performance of some weak classifiers in the combination by giving higher weights to the weak classifiers’ sensing decisions. Simulation results verify the performance improvement by the proposed algorithm compared to the existing techniques such as genetic algorithm soft decision fusion (GASDF), particle swarm optimization soft decision fusion (PSOSDF), maximum gain combination soft decision fusion (MGCSDF) and count hard decision fusion (CHDF). The experimental setup is conducted at different levels of the signal-to-noise ratios (SNRs), total number of cooperative users and sensing samples that show minimum error probability results for the proposed scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Muhammad Sajjad Khan ◽  
Noor Gul ◽  
Junsu Kim ◽  
Ijaz Mansoor Qureshi ◽  
Su Min Kim

Internet of Things (IoT) is a new challenging paradigm for connecting a variety of heterogeneous networks. Since its introduction, many researchers have been studying how to efficiently exploit and manage spectrum resource for IoT applications. An explosive increase in the number of IoT devices accelerates towards the future-connected society but yields a high system complexity. Cognitive radio (CR) technology is also a promising candidate for future wireless communications. CR via dynamic spectrum access provides opportunities to secondary users (SUs) to access licensed spectrum bands without interfering primary users by performing spectrum sensing before accessing available spectrum bands. However, multipath effects can degrade the sensing capability of an individual SU. Therefore, for more precise sensing, it is helpful to exploit multiple collaborative sensing users. The main problem in cooperative spectrum sensing is the presence of inaccurate sensing information received from the multipath-affected SUs and malicious users at a fusion center (FC). In this paper, we propose a genetic algorithm-based soft decision fusion scheme to determine the optimum weighting coefficient vector against SUs’ sensing information. The weighting coefficient vector is further utilized in a soft decision rule at FC in order to make a global decision. Through extensive simulations, the effectiveness of the proposed scheme is evaluated compared with other conventional schemes.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1687
Author(s):  
Noor Gul ◽  
Su Min Kim ◽  
Saeed Ahmed ◽  
Muhammad Sajjad Khan ◽  
Junsu Kim

The secondary users (SUs) in cognitive radio networks (CRNs) can obtain reliable spectrum sensing information of the primary user (PU) channel using cooperative spectrum sensing (CSS). Multiple SUs share their sensing observations in the CSS system to tackle fading and shadowing conditions. The presence of malicious users (MUs) may pose threats to the performance of CSS due to the reporting of falsified sensing data to the fusion center (FC). Different categories of MUs, such as always yes, always no, always opposite, and random opposite, are widely investigated by researchers. To this end, this paper proposes a hybrid boosted tree algorithm (HBTA)-based solution that combines the differential evolution (DE) and boosted tree algorithm (BTA) to mitigate the effects of MUs in the CSS systems, leading to reliable sensing results. An optimized threshold and coefficient vector, determined against the SUs employing DE, is utilized to train the BTA. The BTA is a robust ensembling machine learning (ML) technique gaining attention in spectrum sensing operations. To show the effectiveness of the proposed scheme, extensive simulations are performed at different levels of signal-to-noise-ratios (SNRs) and with different sensing samples, iteration levels, and population sizes. The simulation results show that more reliable spectrum decisions can be achieved compared to the individual utilization of DE and BTA schemes. Furthermore, the obtained results show the minimum sensing error to be exhibited by the proposed HBTA employing a DE-based solution to train the BTA. Additionally, the proposed scheme is compared with several other CSS schemes such as simple DE, simple BTA, maximum gain combination (MGC), particle swarm optimization (PSO), genetic algorithm (GA), and K-nearest neighbor (KNN) algorithm-based soft decision fusion (SDF) schemes to validate its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document