A grid-connected photovoltaic system with a maximum power point tracker using passivity-based control applied in a boost converter

Author(s):  
A. F. Cupertino ◽  
J. T. de Resende ◽  
H. A. Pereira ◽  
S. I. Seleme Junior
Author(s):  
Norazlan Hashim ◽  
Zainal Salam ◽  
Dalina Johari ◽  
Nik Fasdi Nik Ismail

<span>The main components of a Stand-Alone Photovoltaic (SAPV) system consists of PV array, DC-DC converter, load and the maximum power point tracking (MPPT) control algorithm. MPPT algorithm was used for extracting maximum available power from PV module under a particular environmental condition by controlling the duty ratio of DC-DC converter. Based on maximum power transfer theorem, by changing the duty cycle, the load resistance as seen by the source is varied and matched with the internal resistance of PV module at maximum power point (MPP) so as to transfer the maximum power. Under sudden changes in solar irradiance, the selection of MPPT algorithm’s sampling time (T<sub>S_MPPT</sub>) is very much depends on two main components of the converter circuit namely; inductor and capacitor. As the value of these components increases, the settling time of the transient response for PV voltage and current will also increase linearly. Consequently, T<sub>S_MPPT </sub>needs to be increased for accurate MPPT and therefore reduce the tracking speed. This work presents a design considerations of DC-DC Boost Converter used in SAPV system for fast and accurate MPPT algorithm. The conventional Hill Climbing (HC) algorithm has been applied to track the MPP when subjected to sudden changes in solar irradiance. By selecting the optimum value of the converter circuit components, a fast and accurate MPPT especially during sudden changes in irradiance has been realized.</span>


2018 ◽  
Vol 7 (4.35) ◽  
pp. 457
Author(s):  
M. I. Iman ◽  
M. F. Roslan ◽  
Pin Jern Ker ◽  
M. A. Hannan

This work comprehensively demonstrates the performance analysis of Fuzzy Logic Controller (FLC) with Particle Swarm Optimization (PSO) Maximum Power Point Tracker (MPPT) algorithm on a stand-alone Photovoltaic (PV) applications systems. A PV panel, DC-DC Boost converter and resistive load was utilized as PV system. Three different MPPT algorithms were implemented in the converter. The result obtained from the converter was analyzed and compared to find the best algorithm to be used to identify the point in which maximum power can be achieve in a PV system. The objective is to reduce the time taken for the tracking of maximum power point of PV application system and minimize output power oscillation. The simulation was done by using MATLAB/Simulink with DC-DC Boost converter. The result shows that FLC method with PSO has achieved the fastest response time to track MPP and provide minimum oscillation compared to conventional P&O and FLC techniques.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4775
Author(s):  
Kuei-Hsiang Chao ◽  
Yu-Ju Lai

In this study, a maximum power point tracker was developed for photovoltaic module arrays by using a teacher-learning-based optimization (TLBO) algorithm to control the photovoltaic system. When a photovoltaic module array is shaded, a conventional maximum power point tracker may obtain the local maximum power point rather than the global maximum power point. The tracker developed in this study was aimed at solving this problem. To prove the viability of the proposed method, a SANYO HIP 2717 photovoltaic module with diverse connection patterns and shading ratios was used. Thus, single-peak, double-peak, triple-peak, and multi-peak power–voltage characteristic curves of the photovoltaic module array were obtained. A simulation of maximum power point tracking (MPPT) was then performed with MATLAB software. With regard to practical testing, a boost converter was used as the hardware structure of the maximum power point tracker and a TMS320F2808 digital signal processor was selected to execute the rules for MPPT. The results of the practical tests verified that the proposed improved TLBO algorithm had a superior accuracy to existing TLBO algorithms. In addition, the proposed improved TLBO algorithm can shorten the tracking time to 1/2 or 1/4, so it can improve the efficiency of power generation by two to three percentage.


2021 ◽  
pp. 237-246
Author(s):  
C. Balaji ◽  
O. Hemakesavulu ◽  
A. Dominic Savio ◽  
B. Vinothkumar ◽  
S. Sakthi ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 30
Author(s):  
Ayu Maulidiyah ◽  
Andriani Parastiwi ◽  
Denda Dewatama

Pembangkit Listrik Tenaga Surya (PLTS) adalahsalah satu energi yang sedang dikembangkan saat ini olehPemerintah Indonesia karena merupakan Negara tropis,Indonesia memiliki potensi energi surya yang cukup besar.Berdasarkan data penyinaran matahari yang telah dihimpundari 18 lokasi di Indonesia, radiasi surya pada daerah Indonesiabagian barat yaitu sebesar 4.5 kWh/m2 /hari sedangkan padadaerah Indonesia bagian timur yaitu sebesar 5.1 kWh/m2 /hari.Nilai ini merupakan potensi besar yang dapat dimanfaatkanoleh masyarakat. Salah satu pemanfaatan energi surya tersebutterdapat pada charge controller yang merupakan sebuahcharge untuk menstabilkan tegangan hasil keluaran panel suryasehingga dapat melakukan pengisian yang optimum terhadapbaterai agar nantinya dapat digunakan untuk beban DC maupunbeban AC. Buck Boost Converter digunakan sebagai topologiconverter dalam charge controller dengan kontrol fuzzy logicTsukamoto sehingga tegangan output dapat bekerja sesuaiPWM yang telah diatur. Hasil dari fuzzy dapat membuktikanbahwa tegangan keluaran berada pada range yang sesuai.Dutycycle yang digunakan untuk buck converter berkisarantara 28%-94% sedangkan untuk boost converter berkisarantara 48%-87% agar dapat menghasilkan tegangan stabil 14.2volt dengan nilai error dutycycle yang dihasilkan rata-ratasebesar 1%.


Sign in / Sign up

Export Citation Format

Share Document