Efficient solar power heating system based on lenticular condensation

Author(s):  
Shuping Dang ◽  
Jiahong Ju ◽  
Daniel Matthews ◽  
Xue Feng ◽  
Chao Zuo
Keyword(s):  
Author(s):  
Amanie N. Abdelmessih ◽  
Siddiq S. Mohammed

Solar power is a clean source of energy, i.e. it does not generate carbon dioxide or other air pollutants. In 2017, solar power produced only 0.6 percent of the energy used in the United States, according to the Energy Information Administration. Consequently, more solar energy should be implemented, such as in solar water heaters. This research took place in Riverside, Southern California where there is an abundance of solar energy. In house uniquely designed and assembled solar tubes were used in designing a mini solar water heating system. The mini solar water heating system was set to operate under either natural or forced convection. The results of running the system under forced convection then under natural convection conditions are reported and discussed in the article. In addition, comparison of using two different solar water storage systems are reported: the first was water; the second storage medium was a combination of water and gravel. Since water heaters are extensively used for residential purposes, this research mimicked the inefficiencies in residential use and is compared with ideal operating conditions. The performance of the different cases studied is evaluated.


Author(s):  
Randy Gee ◽  
Gilbert Cohen ◽  
Ken Greenwood

The first commercial-scale Duke Solar Power Roof™, a roof-integrated solar cooling and heating system, began operation in Raleigh, North Carolina in late July 2002. This system is designed to provide 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system.


2017 ◽  
Vol 8 (4) ◽  
pp. 1-19
Author(s):  
Oliveira Helio Marques de ◽  
◽  
Giacaglia Giorgio Eugenio Oscare ◽  

2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


2015 ◽  
Vol 1 (1) ◽  
pp. 5-16
Author(s):  
John Ohoiwutun

Utilization of conventional energy sources such as coal, fuel oil, natural gas and others on the one hand has a low operating cost, but on the other side of the barriers is the greater source of diminishing returns and, more importantly, the emergence of environmental pollution problems dangerous to human life. This study aims to formulate the kinematics and dynamics to determine the movement of Solar Power Mower. In this study, using solar power as an energy source to charge the battery which then runs the robot. Design and research was conducted in the Department of Mechanical Workshop Faculty of Engineering, University of Hasanuddin of Gowa. Control system used is a manual system using radio wave transmitter and receiver which in turn drive the robot in the direction intended. Experimental results showed that treatment with three variations of the speed of 6.63 m / s, 8.84 m / s and 15.89 m / sec then obtained the best results occur in grass cutting 15.89 sec and high-speed cutting grass 5 cm. Formulation of kinematics and dynamics for lawn mowers, there are 2 control input variables, x and y ̇ ̇ 3 to control the output variables x, y and θ so that there is one variable redudant. Keywords: mobile robots, lawn mower, solar power


Sign in / Sign up

Export Citation Format

Share Document