Controller of high-speed electro-spindle with AC HMBs based on optimal control theory

Author(s):  
Huangqiu Zhu ◽  
Min Cai ◽  
Quan Wang ◽  
Yan Chen
1983 ◽  
Vol 105 (3) ◽  
pp. 576-584 ◽  
Author(s):  
M. Chew ◽  
F. Freudenstein ◽  
R. W. Longman

The synthesis of the parameters governing the dynamic response of high-speed cam-follower systems ideally involves an integrated approach capable of carrying out the tradeoffs necessary to achieve optimum dynamic response in the design stage. These trade-offs involve a balance between the system characteristics at the output and at the cam-follower interface. In this investigation optimal-control theory has been demonstrated to be a useful tool in developing such a tradeoff. Part 1 describes the development of an optimization criterion while Part 2 describes the application of optimal-control theory to the evaluation of system parameters satisfying the optimization criterion.


1983 ◽  
Vol 105 (3) ◽  
pp. 585-591 ◽  
Author(s):  
M. Chew ◽  
F. Freudenstein ◽  
R. W. Longman

This part is concerned with the determination of optimum values of the design parameters of cam-follower systems according to the criterion developed in Part 1. The nonlinearities associated with the optimization of contact stress, pressure-angle, and friction-dependent forces, which create difficulties in the simpler approaches, can be tolerated in the optimal-control-theory formulation, which is developed in this investigation. The procedure for the optimization of tuned D-R-D and D-R-R-D cams has been described and the results illustrated by means of numerical examples.


1994 ◽  
Vol 116 (3) ◽  
pp. 867-874 ◽  
Author(s):  
B. C. Fabien ◽  
R. W. Longman ◽  
F. Freudenstein

This paper uses linear quadratic optimal control theory to design high-speed Dwell-Rise-Dwell (D-R-D) cams. Three approaches to D-R-D cam design are compared. In the first approach the cam is designed to be optimal at a fixed operating speed, i.e., a tuned cam design is obtained. In the second approach the cam profile is determined by minimizing a sum of quadratic cost functions over a range of discrete speeds, thus producing a cam-follower system which is optimal over a range of speeds. The third technique uses trajectory sensitivity minimization to design a cam which is insensitive to speed variations. All design methods are formulated as linear quadratic optimal control problems and solved using an efficient numerical procedure. It is shown that the design techniques developed can lead to cams that have significantly lower peak contact stress, contact force and energy loss when compared to a polydyne cam design. Furthermore, the trajectory sensitivity minimization approach is shown to yield cams that have lower residual vibration, over a range of speeds, when compared to a polydyne cam design.


2011 ◽  
Vol 291-294 ◽  
pp. 1921-1924 ◽  
Author(s):  
Qing Hua Song ◽  
Xing Ai

Vibration frequencies during high-speed milling processes are investigated. Based on the resonant theory and three critical stats of phase position of successive two cutter teeth, six kinds of spindle speeds are shown, which divide the stable region in stability limit diagram into four parts. Furthermore, using optimal control theory, a novel stable region is proposed, which divides the region into three parts (unconditional stable, optimal stable, and conditional stable region).


2014 ◽  
Vol 2 ◽  
pp. 86-86
Author(s):  
Miki U. Kobayashi ◽  
Nobuaki Aoki ◽  
Noriyoshi Manabe ◽  
Tadafumi Adschiri

Sign in / Sign up

Export Citation Format

Share Document