Classification of brain MRI using multi-cluster feature selection and KNN classifier

Author(s):  
Hashem Kalbkhani ◽  
Arghavan Salimi ◽  
Mahrokh G. Shayesteh

In the brain tumor MRI images, the identification, segmentation and detection of the infectious area is a tedious and lengthy task. As segmentation is called intensity inhomogeneity by an intrinsic object. In this paper we suggest an energy efficient minimization technique for joint domain assessment and segmentation of MR images called multiplicative intrinsic component optimization (MICO). In this work, we focused on quicker implementation with a robust removal of gray-level co-occurrence matrix (GLCM). Optimal texture characteristics are obtained by the Spatial Gray Dependence (SGLDM) technique from ordinary and tumor areas. With very large feature sets, the choice of features is redundant because the precision frequently worsens without choice of features. However, when only the feature selection is used, the precision of classification is significantly improved. However, by reducing the time needed for classification computations and improving classification precision by removing redundant, false or incorrect characteristics. A fresh function choice and weighting technique, supported by the decomposition developmental multi-objective algorithm, are provided in this work. These characteristics are provided for the MPNN classification. Modified probabilistic neural network (MPNN) classification was used in brain MRI images for training and testing for precision in tumor identification. The simulation findings accomplished almost 98% precision in the identification of ordinary and abnormal tissue from brain MR images showing the efficiency of the method suggested.


2011 ◽  
Vol 32 (15) ◽  
pp. 4311-4326 ◽  
Author(s):  
Yasser Maghsoudi ◽  
Mohammad Javad Valadan Zoej ◽  
Michael Collins

2021 ◽  
Vol 11 (15) ◽  
pp. 6983
Author(s):  
Maritza Mera-Gaona ◽  
Diego M. López ◽  
Rubiel Vargas-Canas

Identifying relevant data to support the automatic analysis of electroencephalograms (EEG) has become a challenge. Although there are many proposals to support the diagnosis of neurological pathologies, the current challenge is to improve the reliability of the tools to classify or detect abnormalities. In this study, we used an ensemble feature selection approach to integrate the advantages of several feature selection algorithms to improve the identification of the characteristics with high power of differentiation in the classification of normal and abnormal EEG signals. Discrimination was evaluated using several classifiers, i.e., decision tree, logistic regression, random forest, and Support Vecctor Machine (SVM); furthermore, performance was assessed by accuracy, specificity, and sensitivity metrics. The evaluation results showed that Ensemble Feature Selection (EFS) is a helpful tool to select relevant features from the EEGs. Thus, the stability calculated for the EFS method proposed was almost perfect in most of the cases evaluated. Moreover, the assessed classifiers evidenced that the models improved in performance when trained with the EFS approach’s features. In addition, the classifier of epileptiform events built using the features selected by the EFS method achieved an accuracy, sensitivity, and specificity of 97.64%, 96.78%, and 97.95%, respectively; finally, the stability of the EFS method evidenced a reliable subset of relevant features. Moreover, the accuracy, sensitivity, and specificity of the EEG detector are equal to or greater than the values reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document