Design and circuit implementation of synchronizing nonlinear controller for unified chaotic system: A T-S fuzzy model approach

Author(s):  
Mehdi Miri ◽  
Mohammad Hasan Asemani
Open Physics ◽  
2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Chun-Guo Jing ◽  
Ping He ◽  
Tao Fan ◽  
Yangmin Li ◽  
Changzhong Chen ◽  
...  

AbstractThis paper focuses on the single state feedback stabilization problem of unified chaotic system and circuit implementation. Some stabilization conditions will be derived via the single state feedback control scheme. The robust performance of controlled unified chaotic systems with uncertain parameter will be investigated based on maximum and minimum analysis of uncertain parameter, the robust controller which only requires information of a state of the system is proposed and the controller is linear. Both the unified chaotic system and the designed controller are synthesized and implemented by an analog electronic circuit which is simpler because only three variable resistors are required to be adjusted. The numerical simulation and control in MATLAB/Simulink is then provided to show the effectiveness and feasibility of the proposed method which is robust against some uncertainties. The results presented in this paper improve and generalize the corresponding results of recent works.


2019 ◽  
Vol 29 (09) ◽  
pp. 1950117 ◽  
Author(s):  
Xin Zhang ◽  
Chunhua Wang

Based on the study on Jerk chaotic system, a multiscroll hyperchaotic system with hidden attractors is proposed in this paper, which has infinite number of equilibriums. The chaotic system can generate [Formula: see text] scroll hyperchaotic hidden attractors. The dynamic characteristics of the multiscroll hyperchaotic system with hidden attractors are analyzed by means of dynamic analysis methods such as Lyapunov exponents and bifurcation diagram. In addition, we have studied the synchronization of the system by applying an adaptive control method. The hardware experiment of the proposed multiscroll hyperchaotic system with hidden attractors is carried out using discrete components. The hardware experimental results are consistent with the numerical simulation results of MATLAB and the theoretical analysis results.


2020 ◽  
Vol 5 (5) ◽  
pp. 4345-4356
Author(s):  
Hongli An ◽  
◽  
Dali Feng ◽  
Li Sun ◽  
Haixing Zhu ◽  
...  

2021 ◽  
Vol 4 ◽  
pp. 100098
Author(s):  
Rodrigo Sislian ◽  
Flávio V. da Silva ◽  
Marco A. Coghi ◽  
Rubens Gedraite

2021 ◽  
Vol 31 (01) ◽  
pp. 2150013
Author(s):  
Qiang Lai

This article presents a unified four-dimensional autonomous chaotic system with various coexisting attractors. The dynamic behaviors of the system are determined by its special nonlinearities with multiple zeros. Two cases of nonlinearities with sine function of the system are discussed. The symmetrical coexisting attractors, asymmetrical coexisting attractors and infinitely many coexisting attractors in the system are numerically demonstrated. This shows that such a system has an ability to produce abundant coexisting attractors, depending on the number of equilibrium points determined by nonlinearities.


2021 ◽  
Vol 158 (A3) ◽  
Author(s):  
X K Zhang ◽  
G Q Zhang

In order to solve the problem that backstepping method cannot effectively guarantee the robust performance of the closed-loop system, a novel method of determining parameter is developed in this note. Based on the ship manoeuvring empirical knowledge and the closed-loop shaping theory, the derived parameters belong to a reduced robust group in the original stabilizing set. The uniformly asymptotic stability is achieved theoretically. The training vessel “Yulong” and the tanker “Daqing232” are selected as the plants in the simulation experiment. And the simulation results are presented to demonstrate the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document