Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators

Author(s):  
L. Zlajpah ◽  
B. Nemec
Author(s):  
Fernando B. M. Duarte ◽  
J. A. Tenreiro Machado

Redundant manipulators have some advantages when compared with classical arms because they allow the trajectory optimization, both on the free space and on the presence of obstacles, and the resolution of singularities. For this type of arms the proposed kinematic control algorithms adopt generalized inverse matrices but, in general, the corresponding trajectory planning schemes show important limitations. Motivated by these problems this paper studies the pseudoinverse-based trajectory planning algorithms, using the theory of fractional calculus.


Author(s):  
Yu-Che Chen ◽  
Kevin A. O’Neil

Abstract Damped Least Square (DLS) method has been widely used as an on-line algorithm for manipulator path tracking near and at singular configurations. Wampler (1986) formulated the framework of DLS method applied to velocity control and addressed the applicability of DLS method to acceleration control. The purpose of this paper is to demonstrate the differences in the joint paths generated by damped velocity and damped acceleration control algorithms in non-redundant manipulators. We examine these joint paths, find the cause of the differences, and demonstrate the features of damped acceleration control in non-redundant manipulator dynamics. Simulation results on a planar 2R and a spatial 6R manipulator moving through and near singular configurations verify the phenomena analyzed.


Author(s):  
Akira Yanou ◽  
◽  
Yang Hou ◽  
Mamoru Minami ◽  
Yosuke Kobayashi

This paper explores a performance of first-order configuration prediction for redundant manipulators based on avoidance manipulability in order to achieve an on-line control of trajectory tracking and obstacle avoidance for redundant manipulators. In the trajectory tracking process, manipulator is required to keep a configuration with maximal avoidance manipulability in real time. Predictive control in this paper uses manipulators’ future configurations to control current configuration aiming at completing tasks of trajectory tracking and obstacle avoidance on-line and simultaneously with higher avoidance manipulability. We compare Multi-Preview Control with predictive control using redundant manipulator, and show the results through simulations. The effectiveness of predictive control using first-order configuration prediction is also validated in the case of not only straight target trajectory but also curve target trajectory. In addition, an influence of measurement noise on manipulator’s joint angle is newly considered.


Sign in / Sign up

Export Citation Format

Share Document