scholarly journals A Generalized Kalman Filter Augmented Deep-Learning based Approach for Autonomous Landing in MAVs

Author(s):  
Pranay Mathur ◽  
Yash Jangir ◽  
Neena Goveas
2021 ◽  
Author(s):  
J. Carter Braxton ◽  
Kyle Herkenhoff ◽  
Jonathan Rothbaum ◽  
Lawrence Schmidt

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2742 ◽  
Author(s):  
Wang ◽  
Walsh ◽  
Koirala

: Pre-harvest fruit yield estimation is useful to guide harvesting and marketing resourcing, but machine vision estimates based on a single view from each side of the tree (“dual-view”) underestimates the fruit yield as fruit can be hidden from view. A method is proposed involving deep learning, Kalman filter, and Hungarian algorithm for on-tree mango fruit detection, tracking, and counting from 10 frame-per-second videos captured of trees from a platform moving along the inter row at 5 km/h. The deep learning based mango fruit detection algorithm, MangoYOLO, was used to detect fruit in each frame. The Hungarian algorithm was used to correlate fruit between neighbouring frames, with the improvement of enabling multiple-to-one assignment. The Kalman filter was used to predict the position of fruit in following frames, to avoid multiple counts of a single fruit that is obscured or otherwise not detected with a frame series. A “borrow” concept was added to the Kalman filter to predict fruit position when its precise prediction model was absent, by borrowing the horizontal and vertical speed from neighbouring fruit. By comparison with human count for a video with 110 frames and 192 (human count) fruit, the method produced 9.9% double counts and 7.3% missing count errors, resulting in around 2.6% over count. In another test, a video (of 1162 frames, with 42 images centred on the tree trunk) was acquired of both sides of a row of 21 trees, for which the harvest fruit count was 3286 (i.e., average of 156 fruit/tree). The trees had thick canopies, such that the proportion of fruit hidden from view from any given perspective was high. The proposed method recorded 2050 fruit (62% of harvest) with a bias corrected Root Mean Square Error (RMSE) = 18.0 fruit/tree while the dual-view image method (also using MangoYOLO) recorded 1322 fruit (40%) with a bias corrected RMSE = 21.7 fruit/tree. The video tracking system is recommended over the dual-view imaging system for mango orchard fruit count.


Author(s):  
Sujan Kumar Roy ◽  
Aaron Nicolson ◽  
Kuldip K. Paliwal

2021 ◽  
Author(s):  
Sujan Kumar Roy ◽  
Aaron Nicolson ◽  
Kuldip K. Paliwal

Current deep learning approaches to linear prediction coefficient (LPC) estimation for the augmented Kalman filter (AKF) produce bias estimates, due to the use of a whitening filter. This severely degrades the perceived quality and intelligibility of enhanced speech produced by the AKF. In this paper, we propose a deep learning framework that produces clean speech and noise LPC estimates with significantly less bias than previous methods, by avoiding the use of a whitening filter. The proposed framework, called DeepLPC, jointly estimates the clean speech and noise LPC power spectra. The estimated clean speech and noise LPC power spectra are passed through the inverse Fourier transform to form autocorrelation matrices, which are then solved by the Levinson-Durbin recursion to form the LPCs and prediction error variances of the speech and noise for the AKF. The performance of DeepLPC is evaluated on the NOIZEUS and DEMAND Voice Bank datasets using subjective AB listening tests, as well as seven different objective measures (CSIG, CBAK, COVL, PESQ, STOI, SegSNR, and SI-SDR). DeepLPC is compared to six existing deep learning-based methods. Compared to other deep learning approaches to clean speech LPC estimation, DeepLPC produces a lower spectral distortion (SD) level than existing methods, confirming that it exhibits less bias. DeepLPC also produced higher objective scores than any of the competing methods (with an improvement of 0.11 for CSIG, 0.15 for CBAK, 0.14 for COVL, 0.13 for PESQ, 2.66\% for STOI, 1.11 dB for SegSNR, and 1.05 dB for SI-SDR, over the next best method). The enhanced speech produced by DeepLPC was also the most preferred by listeners. By producing less biased clean speech and noise LPC estimates, DeepLPC enables the AKF to produce enhanced speech at a higher quality and intelligibility.


2021 ◽  
Author(s):  
Sujan Kumar Roy ◽  
Aaron Nicolson ◽  
Kuldip K. Paliwal

Current augmented Kalman filter (AKF)-based speech enhancement algorithms utilise a temporal convolutional network (TCN) to estimate the clean speech and noise linear prediction coefficient (LPC). However, the multi-head attention network (MHANet) has demonstrated the ability to more efficiently model the long-term dependencies of noisy speech than TCNs. Motivated by this, we investigate the MHANet for LPC estimation. We aim to produce clean speech and noise LPC parameters with the least bias to date. With this, we also aim to produce higher quality and more intelligible enhanced speech than any current KF or AKF-based SEA. Here, we investigate MHANet within the DeepLPC framework. DeepLPC is a deep learning framework for jointly estimating the clean speech and noise LPC power spectra. DeepLPC is selected as it exhibits significantly less bias than other frameworks, by avoiding the use of whitening filters and post-processing. DeepLPC-MHANet is evaluated on the NOIZEUS corpus using subjective AB listening tests, as well as seven different objective measures (CSIG, CBAK, COVL, PESQ, STOI, SegSNR, and SI-SDR). DeepLPC-MHANet is compared to five existing deep learning-based methods. Compared to other deep learning approaches, DeepLPC-MHANet produced clean speech LPC estimates with the least amount of bias. DeepLPC-MHANet-AKF also produced higher objective scores than any of the competing methods (with an improvement of 0.17 for CSIG, 0.15 for CBAK, 0.19 for COVL, 0.24 for PESQ, 3.70\% for STOI, 1.03 dB for SegSNR, and 1.04 dB for SI-SDR over the next best method). The enhanced speech produced by DeepLPC-MHANet-AKF was also the most preferred amongst ten listeners. By producing LPC estimates with the least amount of bias to date, DeepLPC-MHANet enables the AKF to produce enhanced speech at a higher quality and intelligibility than any previous method.


2019 ◽  
Vol 292 ◽  
pp. 03012
Author(s):  
Konstantin Belyaev ◽  
Andrey Kuleshov ◽  
Ilya Smirnov ◽  
Natalia Tuchkova

The authors data assimilation method, namely, generalized Kalman filter (GKF) method, its application and stability is considered. The problem of stability of a dynamic system with data assimilation formulated for a sequence of random variables forming a Markov chain is considered. The stability formulation for this problem is suggested as the problem of the convergence of the corresponding Markov chain when the number of its members goes to infinity. Necessary and sufficient conditions of this convergence are proved. A number of numerical experiments with the specific dynamic system, namely with the ocean model circulation HYCOM and the GKF method are conducted and discussed. The stability of the GKF method was proofed.


Sign in / Sign up

Export Citation Format

Share Document