filter algorithms
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 45)

H-INDEX

25
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 217
Author(s):  
Marcel Storch ◽  
Thomas Jarmer ◽  
Mirjam Adam ◽  
Norbert de de Lange

In order to locate historical traces, drone-based Laserscanning has become increasingly popular in archaeological prospection and historical conflict landscapes research. The low resolution of aircraft-based Laserscanning is not suitable for small-scale detailed analysis so that high-resolution UAV-based LiDAR data are required. However, many of the existing studies lack a systematic approach to UAV-LiDAR data acquisition and point cloud filtering. We use this methodology to detect anthropogenic terrain anomalies. In this study, we systematically investigated different influencing factors on UAV-LiDAR data acquisition. The flight parameters speed and altitude above ground were systematically varied. In addition, different vegetation cover and seasonal acquisition times were compared, and we evaluated three different types of filter algorithms to separate ground from non-ground. It could be seen from our experiments that for the detection of subsurface anomalies in treeless open terrain, higher flight speeds like 6m/s were feasible. Regarding the flight altitude, we recommend an altitude of 50–75m above ground. At higher flight altitudes of 100–120m above ground, there is the risk that terrain characteristics smaller than 50cm will be missed. Areas covered with deciduous forest should only be surveyed during leaf-off season. In the presence of low-level vegetation (small bushes and shrubs with a height of up to 2m), it turned out that the morphological filter was the most suitable. In tree-covered areas with total absence of near ground vegetation, however, the choice of filter algorithm plays only a subordinate role, especially during winter where the resulting ground point densities have a percentage deviation of less than 6% from each other.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 194
Author(s):  
Ernő Horváth ◽  
Claudiu Pozna ◽  
Miklós Unger

Road and sidewalk detection in urban scenarios is a challenging task because of the road imperfections and high sensor data bandwidth. Traditional free space and ground filter algorithms are not sensitive enough for small height differences. Camera-based or sensor-fusion solutions are widely used to classify drivable road from sidewalk or pavement. A LIDAR sensor contains all the necessary information from which the feature extraction can be done. Therefore, this paper focuses on LIDAR-based feature extraction. For road and sidewalk detection, the current paper presents a real-time (20 Hz+) solution. This solution can also be used for local path planning. Sidewalk edge detection is the combination of three algorithms working parallelly. To validate the result, the de facto standard benchmark dataset, KITTI, was used alongside our measurements. The data and the source code to reproduce the results are shared publicly on our GitHub repository.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6284
Author(s):  
Fan Zhang ◽  
Lele Yin ◽  
Jianqiang Kang

The traditional Kalman filter algorithms have disadvantages of poor stability (the program cannot converge or crash), robustness (sensitive to the initial errors) and accuracy, partially resulted from the fact that noise covariance matrices in the algorithms need to be set artificially. To overcome the above problems, some adaptive Kalman filter (AKF) algorithms are studied, but the problems still remain unsolved. In this study, two improved AKF algorithms, the improved Sage-Husa and innovation-based adaptive estimation (IAE) algorithms, are proposed. Under the different operating conditions, the estimation accuracy, filter stability, and robustness of the two proposed algorithms are analyzed. Results show that the state of charge (SOC) Max error based on the improved Sage-Husa and the improved IAE is less than 3% and 1.5%, respectively, while the Max errors of the original algorithms is larger than 16% and 4% The two proposed algorithms have higher filter stability than the traditional algorithms. In addition, analyses of the robustness of the two proposed algorithms are carried out by changing the initial parameters, proving that neither are sensitive to the initial errors.


2021 ◽  
Vol 263 (2) ◽  
pp. 4683-4691
Author(s):  
Lei Wang ◽  
Kean Chen ◽  
Jian Xu ◽  
Wang Qi

In recent years, more attention has been paid to the performance of algorithm in active noise control (ANC). Compared with filtered-x LMS (FxLMS) algorithm based on stochastic gradient descent, filtered-x RLS (FXRLS) algorithm has faster convergence speed and better tracking performance at the cost of high computational complexity. In order to reduce the computation, fast transversal filter (FTF) algorithm can be used in ANC system. In this paper, simplified multi-channel FXFTF algorithms are presented, and the convergence speed and noise reduction performance of different multichannel algorithms are simulated and compared, and the numerical stability of the algorithms are analyzed.


2021 ◽  
Vol 17 (2) ◽  
pp. 39-62
Author(s):  
Nguyen Long Giang ◽  
Le Hoang Son ◽  
Nguyen Anh Tuan ◽  
Tran Thi Ngan ◽  
Nguyen Nhu Son ◽  
...  

The tolerance rough set model is an effective tool to solve attribute reduction problem directly on incomplete decision systems without pre-processing missing values. In practical applications, incomplete decision systems are often changed and updated, especially in the case of adding or removing attributes. To solve the problem of finding reduct on dynamic incomplete decision systems, researchers have proposed many incremental algorithms to decrease execution time. However, the proposed incremental algorithms are mainly based on filter approach in which classification accuracy was calculated after the reduct has been obtained. As the results, these filter algorithms do not get the best result in term of the number of attributes in reduct and classification accuracy. This paper proposes two distance based filter-wrapper incremental algorithms: the algorithm IFWA_AA in case of adding attributes and the algorithm IFWA_DA in case of deleting attributes. Experimental results show that proposed filter-wrapper incremental algorithm IFWA_AA decreases significantly the number of attributes in reduct and improves classification accuracy compared to filter incremental algorithms such as UARA, IDRA.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jueyu Wang ◽  
Chao Gu ◽  
Guoqiang Wang

AbstractRecent studies show that the filter method has good numerical performance for nonlinear complementary problems (NCPs). Their approach is to reformulate an NCP as a constrained optimization solved by filter algorithms. However, they can only prove that the iterative sequence converges to the KKT point of the constrained optimization. In this paper, we investigate the relation between the KKT point of the constrained optimization and the solution of the NCP. First, we give several sufficient conditions under which the KKT point of the constrained optimization is the solution of the NCP; second, we define regular conditions and regular point which include and generalize the previous results; third, we prove that the level sets of the objective function of the constrained optimization are bounded for a strongly monotone function or a uniform P-function; finally, we present some examples to verify the previous results.


Sign in / Sign up

Export Citation Format

Share Document