Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1299
Author(s):  
Honglin Yuan ◽  
Tim Hoogenkamp ◽  
Remco C. Veltkamp

Deep learning has achieved great success on robotic vision tasks. However, when compared with other vision-based tasks, it is difficult to collect a representative and sufficiently large training set for six-dimensional (6D) object pose estimation, due to the inherent difficulty of data collection. In this paper, we propose the RobotP dataset consisting of commonly used objects for benchmarking in 6D object pose estimation. To create the dataset, we apply a 3D reconstruction pipeline to produce high-quality depth images, ground truth poses, and 3D models for well-selected objects. Subsequently, based on the generated data, we produce object segmentation masks and two-dimensional (2D) bounding boxes automatically. To further enrich the data, we synthesize a large number of photo-realistic color-and-depth image pairs with ground truth 6D poses. Our dataset is freely distributed to research groups by the Shape Retrieval Challenge benchmark on 6D pose estimation. Based on our benchmark, different learning-based approaches are trained and tested by the unified dataset. The evaluation results indicate that there is considerable room for improvement in 6D object pose estimation, particularly for objects with dark colors, and photo-realistic images are helpful in increasing the performance of pose estimation algorithms.


2020 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Laura Gonçalves Ribeiro ◽  
Olli J. Suominen ◽  
Ahmed Durmush ◽  
Sari Peltonen ◽  
Emilio Ruiz Morales ◽  
...  

Visual technologies have an indispensable role in safety-critical applications, where tasks must often be performed through teleoperation. Due to the lack of stereoscopic and motion parallax depth cues in conventional images, alignment tasks pose a significant challenge to remote operation. In this context, machine vision can provide mission-critical information to augment the operator’s perception. In this paper, we propose a retro-reflector marker-based teleoperation aid to be used in hostile remote handling environments. The system computes the remote manipulator’s position with respect to the target using a set of one or two low-resolution cameras attached to its wrist. We develop an end-to-end pipeline of calibration, marker detection, and pose estimation, and extensively study the performance of the overall system. The results demonstrate that we have successfully engineered a retro-reflective marker from materials that can withstand the extreme temperature and radiation levels of the environment. Furthermore, we demonstrate that the proposed maker-based approach provides robust and reliable estimates and significantly outperforms a previous stereo-matching-based approach, even with a single camera.


Author(s):  
Alexander Krull ◽  
Eric Brachmann ◽  
Sebastian Nowozin ◽  
Frank Michel ◽  
Jamie Shotton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document