Soft Robot Configuration Estimation and Control Using Simultaneous Localization and Mapping

Author(s):  
Christian Sorensen ◽  
Phillip Hyatt ◽  
Matthew Ricks ◽  
Seth Nielsen ◽  
Marc D. Killpack
Author(s):  
Matthias Morzfeld

Implicit sampling is a recently developed variationally enhanced sampling method that guides its samples to regions of high probability, so that each sample carries information. Implicit sampling may thus improve the performance of algorithms that rely on Monte Carlo (MC) methods. Here the applicability and usefulness of implicit sampling for improving the performance of MC methods in estimation and control is explored, and implicit sampling based algorithms for stochastic optimal control, stochastic localization, and simultaneous localization and mapping (SLAM) are presented. The algorithms are tested in numerical experiments where it is found that fewer samples are required if implicit sampling is used, and that the overall runtimes of the algorithms are reduced.


Author(s):  
Zewen Xu ◽  
Zheng Rong ◽  
Yihong Wu

AbstractIn recent years, simultaneous localization and mapping in dynamic environments (dynamic SLAM) has attracted significant attention from both academia and industry. Some pioneering work on this technique has expanded the potential of robotic applications. Compared to standard SLAM under the static world assumption, dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly. Therefore, dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments. Additionally, to meet the demands of some high-level tasks, dynamic SLAM can be integrated with multiple object tracking. This article presents a survey on dynamic SLAM from the perspective of feature choices. A discussion of the advantages and disadvantages of different visual features is provided in this article.


Sign in / Sign up

Export Citation Format

Share Document