scholarly journals Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for Autonomous Driving

Author(s):  
Kemiao Huang ◽  
Qi Hao
Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1474 ◽  
Author(s):  
Muhammad Sualeh ◽  
Gon-Woo Kim

Environmental perception plays an essential role in autonomous driving tasks and demands robustness in cluttered dynamic environments such as complex urban scenarios. In this paper, a robust Multiple Object Detection and Tracking (MODT) algorithm for a non-stationary base is presented, using multiple 3D LiDARs for perception. The merged LiDAR data is treated with an efficient MODT framework, considering the limitations of the vehicle-embedded computing environment. The ground classification is obtained through a grid-based method while considering a non-planar ground. Furthermore, unlike prior works, 3D grid-based clustering technique is developed to detect objects under elevated structures. The centroid measurements obtained from the object detection are tracked using Interactive Multiple Model-Unscented Kalman Filter-Joint Probabilistic Data Association Filter (IMM-UKF-JPDAF). IMM captures different motion patterns, UKF handles the nonlinearities of motion models, and JPDAF associates the measurements in the presence of clutter. The proposed algorithm is implemented on two slightly dissimilar platforms, giving real-time performance on embedded computers. The performance evaluation metrics by MOT16 and ground truths provided by KITTI Datasets are used for evaluations and comparison with the state-of-the-art. The experimentation on platforms and comparisons with state-of-the-art techniques suggest that the proposed framework is a feasible solution for MODT tasks.


2020 ◽  
pp. 027836492097936
Author(s):  
Matthew Pitropov ◽  
Danson Evan Garcia ◽  
Jason Rebello ◽  
Michael Smart ◽  
Carlos Wang ◽  
...  

The Canadian Adverse Driving Conditions (CADC) dataset was collected with the Autonomoose autonomous vehicle platform, based on a modified Lincoln MKZ. The dataset, collected during winter within the Region of Waterloo, Canada, is the first autonomous driving dataset that focuses on adverse driving conditions specifically. It contains 7,000 frames of annotated data from 8 cameras (Ximea MQ013CG-E2), lidar (VLP-32C), and a GNSS+INS system (Novatel OEM638), collected through a variety of winter weather conditions. The sensors are time synchronized and calibrated with the intrinsic and extrinsic calibrations included in the dataset. Lidar frame annotations that represent ground truth for 3D object detection and tracking have been provided by Scale AI.


Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 12
Author(s):  
Evangelos Maltezos ◽  
Athanasios Douklias ◽  
Aris Dadoukis ◽  
Fay Misichroni ◽  
Lazaros Karagiannidis ◽  
...  

Situational awareness is a critical aspect of the decision-making process in emergency response and civil protection and requires the availability of up-to-date information on the current situation. In this context, the related research should not only encompass developing innovative single solutions for (real-time) data collection, but also on the aspect of transforming data into information so that the latter can be considered as a basis for action and decision making. Unmanned systems (UxV) as data acquisition platforms and autonomous or semi-autonomous measurement instruments have become attractive for many applications in emergency operations. This paper proposes a multipurpose situational awareness platform by exploiting advanced on-board processing capabilities and efficient computer vision, image processing, and machine learning techniques. The main pillars of the proposed platform are: (1) a modular architecture that exploits unmanned aerial vehicle (UAV) and terrestrial assets; (2) deployment of on-board data capturing and processing; (3) provision of geolocalized object detection and tracking events; and (4) a user-friendly operational interface for standalone deployment and seamless integration with external systems. Experimental results are provided using RGB and thermal video datasets and applying novel object detection and tracking algorithms. The results show the utility and the potential of the proposed platform, and future directions for extension and optimization are presented.


Sign in / Sign up

Export Citation Format

Share Document