A type-1 fuzzy logic algorithm to manage the flow of energy in a stand-alone PV/wind/battery hybrid system

Author(s):  
Sanaa Faquir ◽  
Ali Yahyaouy ◽  
Hamid Tairi ◽  
Jalal Sabor
2017 ◽  
Author(s):  
A. Borni ◽  
T. Abdelkrim ◽  
L. Zaghba ◽  
A. Bouchakour ◽  
A. Lakhdari ◽  
...  

2020 ◽  
Vol 88 ◽  
pp. 106861
Author(s):  
André Sanches Fonseca Sobrinho ◽  
Francisco Granziera Junior

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2108
Author(s):  
Mohamed Yassine Allani ◽  
Jamel Riahi ◽  
Silvano Vergura ◽  
Abdelkader Mami

The development and optimization of a hybrid system composed of photovoltaic panels, wind turbines, converters, and batteries connected to the grid, is first presented. To generate the maximum power, two maximum power point tracker controllers based on fuzzy logic are required and a battery controller is used for the regulation of the DC voltage. When the power source varies, a high-voltage supply is incorporated (high gain DC-DC converter controlled by fuzzy logic) to boost the 24 V provided by the DC bus to the inverter voltage of about 400 V and to reduce energy losses to maximize the system performance. The inverter and the LCL filter allow for the integration of this hybrid system with AC loads and the grid. Moreover, a hardware solution for the field programmable gate arrays-based implementation of the controllers is proposed. The combination of these controllers was synthesized using the Integrated Synthesis Environment Design Suite software (Version: 14.7, City: Tunis, Country: Tunisia) and was successfully implemented on Field Programmable Gate Arrays Spartan 3E. The innovative design provides a suitable architecture based on power converters and control strategies that are dedicated to the proposed hybrid system to ensure system reliability. This implementation can provide a high level of flexibility that can facilitate the upgrade of a control system by simply updating or modifying the proposed algorithm running on the field programmable gate arrays board. The simulation results, using Matlab/Simulink (Version: 2016b, City: Tunis, Country: Tunisia, verify the efficiency of the proposed solution when the environmental conditions change. This study focused on the development and optimization of an electrical system control strategy to manage the produced energy and to coordinate the performance of the hybrid energy system. The paper proposes a combined photovoltaic and wind energy system, supported by a battery acting as an energy storage system. In addition, a bi-directional converter charges/discharges the battery, while a high-voltage gain converter connects them to the DC bus. The use of a battery is useful to compensate for the mismatch between the power demanded by the load and the power generated by the hybrid energy systems. The proposed field programmable gate arrays (FPGA)-based controllers ensure a fast time response by making control executable in real time.


2020 ◽  
Vol 4 ◽  
pp. 116-126
Author(s):  
Satya Prakash Kumar ◽  
V.K. Tewari ◽  
Abhilash K. Chandel ◽  
C.R. Mehta ◽  
Brajesh Nare ◽  
...  

Author(s):  
Kai Ren

In all kinds of traffic accidents, the unconscious departure of the vehicle from the lane is one of the most important reasons leading to the occurrence of these accidents. In view of the specific problem of lane departure, a lane departure decision-making method is established without calibration relying on the Kalman filtering fuzzy logic algorithm, according to the characteristics of expressway lanes, based on the machine vision and hearing fusion analysis of lane departure, integrating the extraction of the linear lane line model and the region of interest (ROI) in this paper to judge the degree of vehicle departure from the lane by integrating the slope values of the 2 lane lines in the road image. The results show that the system has good lane recognition capabilities and accurate departure decision-making capabilities, and meet the lane departure warning requirements in the expressway environment.


2002 ◽  
Vol 11 (4) ◽  
pp. 541-552 ◽  
Author(s):  
Kelly Cohen ◽  
Tanchum Weller ◽  
Joseph Z Ben-Asher

Sign in / Sign up

Export Citation Format

Share Document