Mobile agent fault tolerance for information retrieval applications: an exception handling approach

Author(s):  
S. Pears ◽  
Jie Xu ◽  
C. Boldyreff
10.28945/3033 ◽  
2006 ◽  
Author(s):  
G. Adesola Aderounmu ◽  
Bosede Oyatokun ◽  
Matthew Adigun

This paper presents a comparative analysis of Remote Method Invocation (RMI) and Mobile Agent (MA) paradigm used to implement the information storage and retrieval system in a distributed computing environment. Simulation program was developed to measure the performance of MA and RMI using object oriented programming language (the following parameters: search time, fault tolerance and invocation cost. We used search time, fault tolerance and invocation cost as performance parameters in this research work. Experimental results showed that Mobile Agent paradigm offers a superior performance compared to RMI paradigm, offers fast computational speed; procure lower invocation cost by making local invocations instead of remote invocations over the network, thereby reducing network bandwidth. Finally MA has a better fault tolerance than the RMI. With a probability of failure pr = 0.1, mobile agent degrades gracefully.


Author(s):  
Raja Ramanathan

Enterprises that implement Service-driven applications face challenges relating to unprecedented scale, high availability, and fault-tolerance. There is exponential growth with respect to request volume in Service-driven systems, requiring the ability to provide multipoint access to shared services and data while preserving a single system image. Maintaining fault-tolerance in business services is a significant challenge due to their compositional nature, which instills dependencies among the services in the composition. This causes the dependability of the business services to be based on the reliability of the individual services in the composition. This chapter explores the architectural approaches such as service redundancy and design diversity, scaling, clustering, distributed data caching, in-memory data grid, and asynchronous messaging, for improving the dependability of services. It also explores the data scaling bottleneck in data centralization paradigms and illustrates how that presents significant scalability and fault-tolerance challenges in service-driven environments. Prevalent strategies to handle failure recovery such as backward and forward recovery mechanisms as well as the built-in mechanisms in WS-BPEL for exception handling and transactional compensation are discussed.


Author(s):  
Vincenzo De Florio

After having described the main characteristics of dependability and fault-tolerance, it is analyzed here in more detail what it means that a program is fault-tolerant and what are the properties expected from a fault-tolerant program. The main objective of this chapter is introducing two sets of design assumptions that shape the way our fault-tolerant software is structured—the system and the fault models. Often misunderstood or underestimated, those models describe • what is expected from the execution environment in order to let our software system function correctly, and • what are the faults that our system is going to consider. Note that a fault-tolerant program shall (try to) tolerate only those faults stated in the fault model, and will be as defenseless against all other faults as any non fault-tolerant program. Together with the system specification, the fault and system models represent the foundation on top of which our computer services are built. It is not surprising that weak foundations often result in failing constructions. What is really surprising is that in so many cases, little or no attention had been given to those important factors in fault-tolerant software engineering. To give an idea of this, three wellknown accidents are described—the Ariane 5 flight 501, Mariner-1 disasters, and the Therac-25 accidents. In each case it is stressed what went wrong, what were the biggest mistakes, and how a careful understanding of fault models and system models would have helped highlighting the path to avoid catastrophic failures that cost considerable amounts of money and even the lives of innocent people. The other important objective of this chapter is introducing the core subject of this book: Software fault-tolerance situated at the level of the application layer. First of all, it is explained why targeting (also) the application layer is not an open option but a mandatory design choice for effective fault-tolerant software engineering. Secondly, given the peculiarities of the application layer, three properties to measure the quality of the methods to achieve fault-tolerant application software are introduced: 1. Separation of design concerns, that is, how good the method is in keeping the functional aspects and the fault-tolerance aspects separated from each other. 2. Syntactical adequacy, namely how versatile the employed method is in including the wider spectrum of fault-tolerance strategies. 3. Adaptability: How good the employed fault-tolerance method is in dealing with the inevitable changes characterizing the system and its run-time environment, including the dynamics of faults that manifest themselves at service time. Finally, this chapter also defines a few fundamental fault-tolerance services, namely watchdog timers, exception handling, transactions, and checkpointingand- rollback.


Sign in / Sign up

Export Citation Format

Share Document