Sol-gel synthesis of crack-free thin films of calcium lead titanate

Author(s):  
S. Chewasatn ◽  
S.J. Milne ◽  
N. Pankurddee ◽  
L. Chotimongkol
2003 ◽  
Vol 18 (2) ◽  
pp. 357-362 ◽  
Author(s):  
Mary M. Sandstrom ◽  
Paul Fuierer

Control over crystallographic orientation in thin films is important, particularly with highly anisotropic structures. Because of its ferroelectric nature, the layered perovskite La2Ti2O7 has interesting piezoelectric and electrooptic properties that may be exploited when films are highly textured. Sol-gel films with an orientation factor of greater than 95% were fabricated without relying on epitaxial (lattice-matching) growth from the substrate. Film orientation and crystallization were confirmed by x-ray diffraction, scanning electron microscopy, atomic force microscopy, and optical measurements. The particle sizes in all precursor solutions were measured by dynamic light scattering experiments. Experimental results indicate that film orientation is a function of precursor solution concentration, size of the molecular clusters in the solution, and film thickness.


2003 ◽  
Vol 13 (6) ◽  
pp. 1413-1419 ◽  
Author(s):  
M. Yu ◽  
J. Lin ◽  
J. Fu ◽  
H. J. Zhang ◽  
Y. C. Han

2017 ◽  
Vol 41 (12) ◽  
pp. 4771-4775 ◽  
Author(s):  
Maria R. Catalano ◽  
Anna L. Pellegrino ◽  
Patrizia Rossi ◽  
Paola Paoli ◽  
Paolo Cortelletti ◽  
...  

A new Na(hfa)·tetraglyme adduct has been synthesized and successfully applied, together with the RE(hfa)3·diglyme (RE = Y, Yb, Er) complexes, in the sol–gel synthesis of upconverting hexagonal NaYF4:Yb3+,Er3+ films.


2017 ◽  
Vol 1 (8) ◽  
pp. 1830-1846 ◽  
Author(s):  
Martin Rohloff ◽  
Björn Anke ◽  
Siyuan Zhang ◽  
Ulrich Gernert ◽  
Christina Scheu ◽  
...  

Facile sol–gel synthesis of Mo:BiVO4 thin films with optimized morphology results in reduced surface recombination and enhanced hole transfer efficiency.


2009 ◽  
Vol 24 (8) ◽  
pp. 2541-2546 ◽  
Author(s):  
Eisuke Yokoyama ◽  
Hironobu Sakata ◽  
Moriaki Wakaki

ZrO2 thin films containing silver nanoparticles were prepared using the sol-gel method with Ag to Zr molar ratios [Ag]/[Zr] = 0.11, 0.25, 0.43, 0.67, 1.00, 1.50, and 2.33. After dip coating on glass substrate, coated films were annealed at 200 and 300 °C in air. X-ray diffraction peaks corresponding to crystalline Ag were observed, but a specific peak corresponding to ZrO2 was not observed. At the molar ratio [Ag]/[Zr] = 0.25, the particle size of Ag distributed broadly centered at 17 nm for an annealing temperature of 200 °C and at 25 nm for 300 °C. The films annealed in air at 200 °C showed an absorption band centered at 450 nm because of the silver surface plasmon resonance, whereas films heated at 300 °C in air caused a red shift of the absorption to 500 nm. The absorption peak was analyzed using the effective dielectric function of Ag-ZrO2 composite films modeled with the Maxwell-Garnett expression.


2004 ◽  
Vol 848 ◽  
Author(s):  
Andrew W. Jackson ◽  
Andrew L. Hector

ABSTRACTThere is an increasing interest in sol-gel synthesis of nitrides. The ability to deposit films of these materials by dip- or spin-coating will increase the range of applications in which they are viable and is an important step toward general sol-gel processing of nitride materials.With transition metals, the ammono based analogue of the well established alkoxy route to gels is inherently difficult to control. Due to the basicity of the system, the overwhelming tendency is of the starting materials to favour particle growth which results in a precipitate rather than a stable emulsion, unless both environment and synthetic pathway are carefully controlled. Hence reports to date of sol-gel routes to nitrides describe production of powders. We report work on a sol-gel route to titanium nitride with the ammonolysis of titanium amides controlled by temperature and chemical moderators, resulting in stable emulsions useful for dip-coating.


2012 ◽  
Vol 41 (1) ◽  
pp. 60-64 ◽  
Author(s):  
M. Vishwas ◽  
K. Narasimha Rao ◽  
A. R. Phani ◽  
K. V. Arjuna Gowda

Sign in / Sign up

Export Citation Format

Share Document