Deep Learning Particle Detection for Probabilistic Tracking in Fluorescence Microscopy Images

Author(s):  
C. Ritter ◽  
T. Wollmann ◽  
J.-Y. Lee ◽  
R. Bartenschlager ◽  
K. Rohr
Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4582
Author(s):  
Changjie Cai ◽  
Tomoki Nishimura ◽  
Jooyeon Hwang ◽  
Xiao-Ming Hu ◽  
Akio Kuroda

Fluorescent probes can be used to detect various types of asbestos (serpentine and amphibole groups); however, the fiber counting using our previously developed software was not accurate for samples with low fiber concentration. Machine learning-based techniques (e.g., deep learning) for image analysis, particularly Convolutional Neural Networks (CNN), have been widely applied to many areas. The objectives of this study were to (1) create a database of a wide-range asbestos concentration (0–50 fibers/liter) fluorescence microscopy (FM) images in the laboratory; and (2) determine the applicability of the state-of-the-art object detection CNN model, YOLOv4, to accurately detect asbestos. We captured the fluorescence microscopy images containing asbestos and labeled the individual asbestos in the images. We trained the YOLOv4 model with the labeled images using one GTX 1660 Ti Graphics Processing Unit (GPU). Our results demonstrated the exceptional capacity of the YOLOv4 model to learn the fluorescent asbestos morphologies. The mean average precision at a threshold of 0.5 ([email protected]) was 96.1% ± 0.4%, using the National Institute for Occupational Safety and Health (NIOSH) fiber counting Method 7400 as a reference method. Compared to our previous counting software (Intec/HU), the YOLOv4 achieved higher accuracy (0.997 vs. 0.979), particularly much higher precision (0.898 vs. 0.418), recall (0.898 vs. 0.780) and F-1 score (0.898 vs. 0.544). In addition, the YOLOv4 performed much better for low fiber concentration samples (<15 fibers/liter) compared to Intec/HU. Therefore, the FM method coupled with YOLOv4 is remarkable in detecting asbestos fibers and differentiating them from other non-asbestos particles.


2019 ◽  
Vol 16 (12) ◽  
pp. 1323-1331 ◽  
Author(s):  
Yichen Wu ◽  
Yair Rivenson ◽  
Hongda Wang ◽  
Yilin Luo ◽  
Eyal Ben-David ◽  
...  

2018 ◽  
Author(s):  
Jianxu Chen ◽  
Liya Ding ◽  
Matheus P. Viana ◽  
HyeonWoo Lee ◽  
M. Filip Sluezwski ◽  
...  

A continuing challenge in quantitative cell biology is the accurate and robust 3D segmentation of structures of interest from fluorescence microscopy images in an automated, reproducible, and widely accessible manner for subsequent interpretable data analysis. We describe the Allen Cell and Structure Segmenter (Segmenter), a Python-based open source toolkit developed for 3D segmentation of cells and intracellular structures in fluorescence microscope images. This toolkit brings together classic image segmentation and iterative deep learning workflows first to generate initial high-quality 3D intracellular structure segmentations and then to easily curate these results to generate the ground truths for building robust and accurate deep learning models. The toolkit takes advantage of the high-replicate 3D live cell image data collected at the Allen Institute for Cell Science of over 30 endogenous fluorescently tagged human induced pluripotent stem cell (hiPSC) lines. Each cell line represents a different intracellular structure with one or more distinct localization patterns within undifferentiated hiPS cells and hiPSC-derivedcardiomyocytes. The Segmenter consists of two complementary elements, a classic image segmentation workflow with a restricted set of algorithms and parameters and an iterative deep learning segmentation workflow. We created a collection of 20 classic image segmentation workflows based on 20 distinct and representative intracellular structure localization patterns as a "lookup table" reference and starting point for users. The iterative deep learning workflow can take over when the classic segmentation workflow is insufficient. Two straightforward "human-in-the loop" curation strategies convert a set of classic image segmentation workflow results into a set of 3D ground truth images for iterative model training without the need for manual painting in 3D. The deep learning model architectures used in this toolkit were designed and tested specifically for 3D fluorescence microscope images and implemented as readable scripts. The Segmenter thus leverages state of the art computer vision algorithms in an accessible way to facilitate their application by the experimental biology researcher. We include two useful applications to demonstrate how we used the classic image segmentation and iterative deep learning workflows to solve more challenging 3D segmentation tasks. First, we introduce the "Training Assay" approach, a new experimental-computational co-design concept to generate more biologically accurate segmentation ground truths. We combined the iterative deep learning workflow with three Training Assays to develop a robust, scalable cell and nuclear instance segmentation algorithm, which could achieve accurate target segmentation for over 98% of individual cells and over 80% of entire fields of view. Second, we demonstrate how to extend the lamin B1 segmentation model built from the iterative deep learning workflow to obtain more biologically accurate lamin B1 segmentation by utilizing multi-channel inputs and combining multiple ML models. The steps and workflows used to develop these algorithms are generalizable to other similar segmentation challenges. More information, including tutorials and code repositories, are available at allencell.org/segmenter.


2019 ◽  
Vol 25 (S2) ◽  
pp. 1376-1377
Author(s):  
Prabhakar R. Gudla ◽  
George Zaki ◽  
Sigal Shachar ◽  
Tom Misteli ◽  
Gianluca Pegoraro

Sign in / Sign up

Export Citation Format

Share Document