Multiple fish tracking via Viterbi data association for low-frame-rate underwater camera systems

Author(s):  
Meng-Che Chuang ◽  
Jenq-Neng Hwang ◽  
Kresimir Williams ◽  
Richard Towler
Author(s):  
Maria Gemel B. Palconit ◽  
Ronnie S. Concepcion II ◽  
Jonnel D. Alejandrino ◽  
Michael E. Pareja ◽  
Vincent Jan D. Almero ◽  
...  

Three-dimensional multiple fish tracking has gained significant research interest in quantifying fish behavior. However, most tracking techniques use a high frame rate, which is currently not viable for real-time tracking applications. This study discusses multiple fish-tracking techniques using low-frame-rate sampling of stereo video clips. The fish were tagged and tracked based on the absolute error of the predicted indices using past and present fish centroid locations and a deterministic frame index. In the predictor sub-system, linear regression and machine learning algorithms intended for nonlinear systems, such as the adaptive neuro-fuzzy inference system (ANFIS), symbolic regression, and Gaussian process regression (GPR), were investigated. The results showed that, in the context of tagging and tracking accuracy, the symbolic regression attained the best performance, followed by the GPR, that is, 74% to 100% and 81% to 91%, respectively. Considering the computation time, symbolic regression resulted in the highest computing lag of approximately 946 ms per iteration, whereas GPR achieved the lowest computing time of 39 ms.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Olasimbo Ayodeji Arigbabu ◽  
Sharifah Mumtazah Syed Ahmad ◽  
Wan Azizun Wan Adnan ◽  
Salman Yussof ◽  
Vahab Iranmanesh ◽  
...  

Soft biometrics can be used as a prescreening filter, either by using single trait or by combining several traits to aid the performance of recognition systems in an unobtrusive way. In many practical visual surveillance scenarios, facial information becomes difficult to be effectively constructed due to several varying challenges. However, from distance the visual appearance of an object can be efficiently inferred, thereby providing the possibility of estimating body related information. This paper presents an approach for estimating body related soft biometrics; specifically we propose a new approach based on body measurement and artificial neural network for predicting body weight of subjects and incorporate the existing technique on single view metrology for height estimation in videos with low frame rate. Our evaluation on 1120 frame sets of 80 subjects from a newly compiled dataset shows that the mentioned soft biometric information of human subjects can be adequately predicted from set of frames.


2017 ◽  
Author(s):  
Maria Zontak ◽  
Matthew Bruce ◽  
Michelle Hippke ◽  
Alan Schwartz ◽  
Matthew O'Donnell

2019 ◽  
Vol 11 (19) ◽  
pp. 2278
Author(s):  
Tao Yang ◽  
Dongdong Li ◽  
Yi Bai ◽  
Fangbing Zhang ◽  
Sen Li ◽  
...  

In recent years, UAV technology has developed rapidly. Due to the mobility, low cost, and variable monitoring altitude of UAVs, multiple-object detection and tracking in aerial videos has become a research hotspot in the field of computer vision. However, due to camera motion, small target size, target adhesion, and unpredictable target motion, it is still difficult to detect and track targets of interest in aerial videos, especially in the case of a low frame rate where the target position changes too much. In this paper, we propose a multiple-object-tracking algorithm based on dense-trajectory voting in aerial videos. The method models the multiple-target-tracking problem as a voting problem of the dense-optical-flow trajectory to the target ID, which can be applied to aerial-surveillance scenes and is robust to low-frame-rate videos. More specifically, we first built an aerial video dataset for vehicle targets, including a training dataset and a diverse test dataset. Based on this, we trained the neural network model by using a deep-learning method to detect vehicles in aerial videos. Thereafter, we calculated the dense optical flow in adjacent frames, and generated effective dense-optical-flow trajectories in each detection bounding box at the current time. When target IDs of optical-flow trajectories are known, the voting results of the optical-flow trajectories in each detection bounding box are counted. Finally, similarity between detection objects in adjacent frames was measured based on the voting results, and tracking results were obtained by data association. In order to evaluate the performance of this algorithm, we conducted experiments on self-built test datasets. A large number of experimental results showed that the proposed algorithm could obtain good target-tracking results in various complex scenarios, and performance was still robust at a low frame rate by changing the video frame rate. In addition, we carried out qualitative and quantitative comparison experiments between the algorithm and three state-of-the-art tracking algorithms, which further proved that this algorithm could not only obtain good tracking results in aerial videos with a normal frame rate, but also had excellent performance under low-frame-rate conditions.


2018 ◽  
Vol 28 (4) ◽  
pp. 878-891 ◽  
Author(s):  
Zhiming Luo ◽  
Pierre-Marc Jodoin ◽  
Song-Zhi Su ◽  
Shao-Zi Li ◽  
Hugo Larochelle
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document