On-Chip Solar Cell and PMU on the Same Substrate with Cold Start-Up from nW and 80 dB of Input Power Range for Biomedical Applications

Author(s):  
E. Ferro ◽  
P. Lopez ◽  
V. M. Brea ◽  
D. Cabello
2020 ◽  
Vol 67 (4) ◽  
pp. 1103-1114 ◽  
Author(s):  
Diego Cabello ◽  
Esteban Ferro ◽  
Oscar Pereira-Rial ◽  
Beatriz Martinez-Vazquez ◽  
Victor M. Brea ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3664
Author(s):  
Gianluca Valenti ◽  
Stefano Murgia ◽  
Ida Costanzo ◽  
Matteo Scarnera ◽  
Francesco Battistella

Compressed air is crucial on an electric or electrified heavy-duty vehicle. The objective of this work was to experimentally determine the performance parameters of the first prototype of an electric-driven sliding-vane air compressor, specifically designed for electric and electrified heavy-duty vehicles, during the transient conditions of cold start-ups. The transient was analyzed for different thermostatic temperatures: 0 °C, −10 °C, −20 °C, and −30 °C. The air compressor unit was placed in a climatic chamber and connected to the electric grid, the water-cooling loop, and the compressed air measuring and controlling rig. The required start-up time was greater the lower the thermostatic temperature, ranging from 30 min at 0 °C to 221 min at −30 °C and depending largely on the volume of the lubricant oil filled initially. The volume flow rate of the compressed air was lower than nominal at the beginning, but it showed a step increase well beyond nominal when the oil reached 50 °C and then decreased gently towards nominal, while the input power kept steady at nominal after a short initial peak. These facts must be considered when estimating the time and the energy required by the air compressor unit to fill up the compressed air tanks of the vehicles.


2022 ◽  
Vol 15 (1) ◽  
pp. 1-26
Author(s):  
Mathieu Gross ◽  
Konrad Hohentanner ◽  
Stefan Wiehler ◽  
Georg Sigl

Isolated execution is a concept commonly used for increasing the security of a computer system. In the embedded world, ARM TrustZone technology enables this goal and is currently used on mobile devices for applications such as secure payment or biometric authentication. In this work, we investigate the security benefits achievable through the usage of ARM TrustZone on FPGA-SoCs. We first adapt Microsoft’s implementation of a firmware Trusted Platform Module (fTPM) running inside ARM TrustZone for the Zynq UltraScale+ platform. This adaptation consists in integrating hardware accelerators available on the device to fTPM’s implementation and to enhance fTPM with an entropy source derived from on-chip SRAM start-up patterns. With our approach, we transform a software implementation of a TPM into a hybrid hardware/software design that could address some of the security drawbacks of the original implementation while keeping its flexibility. To demonstrate the security gains obtained via the usage of ARM TrustZone and our hybrid-TPM on FPGA-SoCs, we propose a framework that combines them for enabling a secure remote bitstream loading. The approach consists in preventing the insecure usages of a bitstream reconfiguration interface that are made possible by the manufacturer and to integrate the interface inside a Trusted Execution Environment.


Sign in / Sign up

Export Citation Format

Share Document