heterogeneous integration
Recently Published Documents


TOTAL DOCUMENTS

715
(FIVE YEARS 264)

H-INDEX

27
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Stijn Cuyvers ◽  
Artur Hermans ◽  
Max Kiewiet ◽  
Jeroen Goyvaerts ◽  
Gunther Roelkens ◽  
...  

MRS Bulletin ◽  
2021 ◽  
Author(s):  
Madhavan Swaminathan ◽  
Mohan Kathaperumal ◽  
Kyoung-sik Moon ◽  
Himani Sharma ◽  
Prahalad Murali ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1553
Author(s):  
Zhong Fang ◽  
Yong He ◽  
Zhequan Chen ◽  
Yunlei Shi ◽  
Junjie Jiao ◽  
...  

The micro-bolometer is important in the field of infrared imaging, although improvements in its performance have been limited by traditional materials. SiGe/Si multi-quantum-well materials (SiGe/Si MQWs) are novelty thermal-sensitive materials with a significantly high TCR and a comparably low 1/f noise. The application of such high-performance monocrystalline films in a micro-bolometer has been limited by film integration technology. This paper reports a SiGe/Si MQWs micro-bolometer fabrication with heterogeneous integration. The integration with the SiGe/Si MQWs handle wafer and dummy read-out circuit wafer was achieved based on adhesive wafer bonding. The SiGe/Si MQWs infrared-absorption structure and thermal bridge were calculated and designed. The SiGe/Si MQWs wafer and a 320 × 240 micro-bolometer array of 40 µm pitch L-type pixels were fabricated. The test results for the average absorption efficiency were more than 90% at the wavelength of 8–14 µm. The test pixel was measured to have a thermal capacity of 1.043 × 10−9 J/K, a thermal conductivity of 1.645 × 10−7 W/K, and a thermal time constant of 7.25 ms. Furthermore, the total TCR value of the text pixel was measured as 2.91%/K with a bias voltage of 0.3 V. The SiGe/Si MQWs micro-bolometer can be widely applied in commercial fields, especially in early medical diagnosis and biological detection.


2021 ◽  
Author(s):  
Tc Chai ◽  
David Ho ◽  
Sc Chong ◽  
Ps Sharon Lim ◽  
Hy Hsiao ◽  
...  

2021 ◽  
Author(s):  
Jay Lia ◽  
Fang-Lin Tsai ◽  
Jackson Li ◽  
George Pan ◽  
Mu-Hsuan Chan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document