Model Channel Pruning Method Based on Squeeze-and-Excitation Mechanism and Upper Quartile Truncation

Author(s):  
Zening Ding ◽  
Jianyu Zhao ◽  
Jiaqi Sun
1972 ◽  
Vol 189 (2) ◽  
pp. 285-304 ◽  
Author(s):  
H. Nifenecker ◽  
C. Signarbieux ◽  
M. Ribrag ◽  
J. Poitou ◽  
J. Matuszek

1978 ◽  
Vol 8 (5) ◽  
pp. 375-389 ◽  
Author(s):  
I.M. Campbell ◽  
R.S. Mason
Keyword(s):  

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Yasuhiro Seo ◽  
Hiroshi Yabuno ◽  
Go Kono

To analyze the excitation mechanism of self-excited oscillation in a beam that is in contact with a moving floor surface such as a cleaning blade, which is a beam mounted in a laser printer to clean the photoreceptor, we study a beam subjected to Coulomb friction and theoretically predict the occurrence of self-excited oscillation through mode-coupling instability. We present an extensible beam model, and derive its governing nonlinear equations by means of special Cosserat theory, which allows for the extensibility of the beam to be considered. The boundary conditions on the end of the beam are unique because the end of the beam makes contact with the moving floor surface. We used a discretized linearized governing equation and performed linear stability analysis. The results indicate that self-excited oscillation in the beam is produced due to both Coulomb friction and mode coupling of the bending and extension of the beam based on the extensibility in the axial direction.


1992 ◽  
Vol 262 ◽  
Author(s):  
Klaus Pressel ◽  
G. Bohnert ◽  
A. Dörnen ◽  
K. Thonke

ABSTRACTThe 0.5 eV (2.5 μm 4000 cm1) emission band in InP has been studied by optical spectroscopy. By the use of Fourier-transform-infrared photoluminescence we have been able to observe at least a three-fold fine structure in the zero-phonon transitions at ∼ 4300 cm−1 which are studied at different temperatures. Based on the fine structure and the long decay time of 1.1 ms we ascribe the 0.5 eV emission to the 4T1 → 6A1 spin-flip transition of Fe3+. The excitation spectrum of this Fe3+-related emission shows a characteristic fine structure at ∼ 1.13 eV which belongs to a charge-transfer process of the type: Fe3+ + hv (1.13 eV) → [Fe2+, bound hole]. We discuss the excitation mechanism of the 0.5 eV emission by charge-transfer states and compare the results with an emission at 3057 cm1 in GaAs, which we attribute to the same Fe3+ transition (decay time: 1.9 ms).


Sign in / Sign up

Export Citation Format

Share Document