Low frequency electromagnetic field exposure study with posable human body model

Author(s):  
X L Chen ◽  
S Benkler ◽  
C H Li ◽  
N Chavannes ◽  
N Kuster
Author(s):  
Bu S. Park ◽  
Sunder S. Rajan ◽  
Leonardo M. Angelone

We present numerical simulation results showing that high dielectric materials (HDMs) when placed between the human body model and the body coil significantly alter the electromagnetic field inside the body. The numerical simulation results show that the electromagnetic field (E, B, and SAR) within a region of interest (ROI) is concentrated (increased). In addition, the average electromagnetic fields decreased significantly outside the region of interest. The calculation results using a human body model and HDM of Barium Strontium Titanate (BST) show that the mean local SAR was decreased by about 56% (i.e., 18.7 vs. 8.2 W/kg) within the body model.


2005 ◽  
Vol 3 ◽  
pp. 227-231 ◽  
Author(s):  
V. C. Motrescu ◽  
U. van Rienen

Abstract. In the recent years, the task of estimating the currents induced within the human body by environmental electromagnetic fields has received increased attention from scientists around the world. While important progress was made in this direction, the unpredictable behaviour of living biological tissue made it difficult to quantify its reaction to electromagnetic fields and has kept the problem open. A successful alternative to the very difficult one of performing measurements is that of computing the fields within a human body model using numerical methods implemented in a software code. One of the difficulties is represented by the fact that some tissue types exhibit an anisotropic character with respect to their dielectric properties. Our work consists of computing currents induced by extremely low frequency (ELF) electric fields in anisotropic muscle tissues using in this respect, a human body model extended with muscle fibre orientations as well as an extended version of the Finite Integration Technique (FIT) able to compute fully anisotropic dielectric properties.


Sign in / Sign up

Export Citation Format

Share Document