The effect of fully electric vehicles on the low frequency electromagnetic environment

Author(s):  
R Armstrong ◽  
L Dawson ◽  
A J Rowell ◽  
C A Marshman ◽  
A R Ruddle
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5696
Author(s):  
Raja Mazuir Raja Ahsan Shah ◽  
Richard Peter Jones ◽  
Caizhen Cheng ◽  
Alessandro Picarelli ◽  
Abd Rashid Abd Abd Aziz ◽  
...  

Vehicle driveability is one of the important attributes in range-extender electric vehicles due to the electric motor torque characteristics at low-speed events. Physical vehicle prototypes are typically used to validate and rectify vehicle driveability attributes. However, this can be expensive and require several design iterations. In this paper, a model-based energy method to assess vehicle driveability is presented based on high-fidelity 49 degree-of-freedom powertrain and vehicle systems. Multibody dynamic components were built according to their true centre of gravity relative to the vehicle datum to provide an accurate system interaction. The work covered a frequency of less than 20 Hz. The results consist of the components’ frequency domination, which was structured and examined to identify the low-frequency resonances sensitivity based on different operating parameters such as road surface coefficients. An energy path method was also implemented on the dominant component by decoupling its compliances to study the effect on the vehicle driveability and low-frequency resonances. The outcomes of the research provided a good understanding of the interaction across the sub-systems levels. The powertrain rubber mounts were the dominant component that controlled the low-frequency resonances (<15.33 Hz) and can change the vehicle driveability quality.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052048
Author(s):  
Y M Denchik ◽  
E V Ivanova ◽  
M N Ivanova ◽  
V G Salnikov ◽  
D A Zubanov

Abstract The article deals with the issues of electromagnetic compatibility of coastal and floating objects in the waters of ports (berths). The subject of the study is the processes occurring in the electrical network when powering ships of the technical fleet and floating objects from the shore, which determine the need for automated calculation of conductive low-frequency electromagnetic disturbance for their subsequent suppression. An algorithm for calculating the parameters of the electromagnetic environment is presented, which is based on the analysis of the distribution parameters of slow voltage changes. The mechanism of EMD occurrence in voltage deviation is described and a mathematical model explaining the probability of its occurrence is presented. An algorithm for calculating the parameters of the electromagnetic environment based on slow voltage changes in the network is compiled. This algorithm is implemented in the “Program for the study of slow voltage changes by the load changingof the electrical network ". For the object under study, the parameters of the distribution of conductive low-frequency electromagnetic disturbance over a slow voltage change are determined. A block diagram of an automatic voltage regulator implementing the proposed voltage stabilization law has been developed.


Author(s):  
Raja Mazuir Raja Ahsan Shah ◽  
R. Peter Jones ◽  
Caizhen Cheng ◽  
Alessandro Picarelli ◽  
Abd Rashid Abd Aziz ◽  
...  

Vehicle driveability is one of the important vehicle attributes in range-extender electric vehicles due to the electric motor torque characteristics at low-speed events. The process of validating and rectifying vehicle driveability attributes is typically utilised by a physical vehicle prototype that can be expensive and required several design iterations. In this paper, a model-based energy method to assess vehicle driveability is presented based on a high-fidelity 49 degree-of-freedom powertrain and vehicle systems. Multibody dynamics components were built according to their true centre of gravity relative to the vehicle datum for providing an accurate system interaction. The work covered a frequency at less than 20 Hz. The results that consisted of the component frequency domination are structured and examined to identify the low-frequency sensitivity based on different operating parameters such as a road surface coefficient. An energy path technique was also implemented on the dominant component by decoupling its compliances to study the effect on the vehicle driveability and low-frequency response. The outcomes of the research provided a good understanding of the interaction across the sub-systems levels. The powertrain rubber mounts were the dominant components that controlled the low-frequency contents (&lt; 15.33 Hz) and can change the vehicle driveability quality.


Sign in / Sign up

Export Citation Format

Share Document