A low-cost Analog Front-End (AFE) transmitter designs for OFDM visible light communications

Author(s):  
Syifaul Fuada ◽  
Trio Adiono ◽  
Angga Pratama Putra ◽  
Yulian Aska
2018 ◽  
Vol 5 (2) ◽  
pp. 39 ◽  
Author(s):  
Syifaul Fuada ◽  
Trio Adiono

 The development of educational kit must be compiled on how to prepare undergraduate students in the engineering field in following the new trends globally and becoming an alternative to the technical education system based on practical approach. The primary motivation for this research is to design and implement the visible light communications (VLC) educational toolkit, especially in the analog front-end part. It consisted of six kits (transimpedance amplifier, pre-amplifier, DC-offset remover, analog filter, and AGC) in which each kit has one practicum task. There are six tasks and one task for the project by integrating these kits. The undergraduate students can use this educational kit to investigate the physical layer in a VLC system. It provides a low-complexity educational kit, so this is becoming an alternative as supplement course offered in this field. Then, it has a simple design and user-friendly. The development of educational kit must be compiled on how to prepare undergraduate students in the engineering field in following the new trends globally and becoming an alternative to the technical education system based on practical approach. The primary motivation for this research is to design and implement the visible light communications (VLC) educational toolkit, especially in the analog front-end part. It consisted of six kits (transimpedance amplifier, pre-amplifier, DC-offset remover, analog filter, and AGC) in which each kit has one practicum task. There are six tasks and one task for the project by integrating these kits. The undergraduate students can use this educational kit to investigate the physical layer in a VLC system. It provides a low-complexity educational kit, so this is becoming an alternative as supplement course offered in this field. Then, it has a simple design and user-friendly.


Optik ◽  
2017 ◽  
Vol 138 ◽  
pp. 103-118 ◽  
Author(s):  
Trio Adiono ◽  
Angga Pradana ◽  
Rachmad Vidya Wicaksana Putra ◽  
Willy Anugrah Cahyadi ◽  
Yeon Ho Chung

Author(s):  
N. Bamiedakis ◽  
R. V. Penty ◽  
I. H. White

Visible light communications (VLCs) have attracted considerable interest in recent years owing to the potential to simultaneously achieve data transmission and illumination using low-cost light-emitting diodes (LEDs). However, the high-speed capability of such links is typically limited by the low bandwidth of LEDs. As a result, spectrally efficient advanced modulation formats have been considered for use in VLC links in order to mitigate this issue and enable higher data rates. Carrierless amplitude and phase (CAP) modulation is one such spectrally efficient scheme that has attracted significant interest in recent years owing to its good potential and practical implementation. In this paper, we introduce the basic features of CAP modulation and review its use in the context of indoor VLC systems. We describe some of its attributes and inherent limitations, present related advances aiming to improve its performance and potential and report on recent experimental demonstrations of LED-based VLC links employing CAP modulation. This article is part of the theme issue ‘Optical wireless communication’.


2021 ◽  
Vol 6 (1) ◽  
pp. 85
Author(s):  
Pablo Corral ◽  
Fernando Rodríguez-Mas ◽  
José Luis Alonso ◽  
Juan Carlos Ferrer ◽  
Susana Fernández de Ávila

In Visible Light Communication (VLC) Systems, data are transmitted by modulating light from an illumination source, that could be an ordinary lamp or light-emitting diodes (LEDs). Photovoltaic cells based on massive heterojunctions of semiconductor polymers have focused the attention of researchers due to several potential advantages over their inorganic counterparts, such as simplicity, low cost and the ability to process large area devices even on flexible substrates. In this paper, we use commercial LEDs in transmission and organic photodetectors (OPD) based on poly(3-hexylthiophene) (P3HT) and a phenyl-C61-butyric acid methyl ester (PCBM) blend used as active layer in reception. We have fabricated and characterized the I-V curve and the Bit Error Rate (BER) response of the OPD using low cost processing techniques and we have used an Atmel 8-bit microcontroller in order to control the electronics to transmit and modulate the signal. Finally, in this work, we have developed and characterized organic photodetectors in a low cost visible light communications system capable of transmitting an image file in real-time, as a proof of concept that is cost effective, since the whole system was implemented using low cost components. You can find more information in the supplementary materials.


Sign in / Sign up

Export Citation Format

Share Document