An approach of distribution systems stabilization for a large-scale PV systems installation environment

Author(s):  
Ken Kuroda ◽  
Yuichi Matsufuji ◽  
Tetsuya Kashiwagi ◽  
Tomiyasu Ichimura ◽  
Ryuichi Yokoyama
2014 ◽  
Vol 15 (1) ◽  
pp. 77-91 ◽  
Author(s):  
Antonio Bracale ◽  
Guido Carpinelli ◽  
Annarita Di Fazio ◽  
Shahab Khormali

Abstract Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems’ losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3743
Author(s):  
Rui Li ◽  
Fangyuan Shi ◽  
Xu Cai ◽  
Haibo Xu

Photovoltaic (PV) power generation has shown a trend towards large-scale medium- or high-voltage integration in recent years. The development of high-frequency link PV systems is necessary for the further improvement of system efficiency and the reduction of system cost. In the system, high-frequency high-step-up ratio LLC converters are one of the most important parts. However, the parasitic parameters of devices lead to a loss of zero-voltage switching (ZVS) in the LLC converter, greatly reducing the efficiency of the system, especially in such a high-frequency application. In this paper, a high-frequency link 35 kV PV system is presented. To suppress the influences of parasitic parameters in the LLC converter in the 35 kV PV system, the influence of parasitic parameters on ZVS is analyzed and expounded. Then, a suppression method is proposed to promote the realization of ZVS. This method adds a saturable inductor on the secondary side to achieve ZVS. The saturable inductor can effectively prevent the parasitic elements of the secondary side from participating in the resonance of the primary side. The experimental results show that this method achieves a higher efficiency than the traditional method by reducing the magnetic inductance.


2018 ◽  
Vol 9 (5) ◽  
pp. 4128-4139 ◽  
Author(s):  
Licheng Wang ◽  
Ruifeng Yan ◽  
Tapan Kumar Saha

2021 ◽  
Author(s):  
Jiaxuan Yan ◽  
Feng Wang ◽  
Haoyu Wang ◽  
Jiachen Tian ◽  
Fang Zhuo

2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Tung Tran The ◽  
Sy Nguyen Quoc ◽  
Dieu Vo Ngoc

This paper proposes the Symbiotic Organism Search (SOS) algorithm to find the optimal network configuration and the placement of distributed generation (DG) units that minimize the real power loss in radial distribution networks. The proposed algorithm simulates symbiotic relationships such as mutualism, commensalism, and parasitism for solving the optimization problems. In the optimization process, the reconfiguration problem produces a large number of infeasible network configurations. To reduce these infeasible individuals and ensure the radial topology of the network, the graph theory was applied during the power flow. The implementation of the proposed SOS algorithm was carried out on 33-bus, 69-bus, 84-bus, and 119-bus distribution networks considering seven different scenarios. Simulation results and performance comparison with other optimization methods showed that the SOS-based approach was very effective in solving the network reconfiguration and DG placement problems, especially for complex and large-scale distribution networks.


Sign in / Sign up

Export Citation Format

Share Document