Impact on rotor angle stability with high solar-PV generation in power networks

Author(s):  
Enkhtsetseg Munkhchuluun ◽  
Lasantha Meegahapola ◽  
Arash Vahidnia
Author(s):  
Syed Sanjar Ul Islam ◽  
Santosh kumar

Due to the natural intermittent nature of wind and solar PV, autonomous wind/PV systems for renewable energy typically require energy storage or other sources of production to form a hybrid system. in this paper objective of the designing of a grid dynamics controller equipped with IGBT based bridge structure for stabilizing various electrical parameters on the grid system while its renewable energy-based grid integration. And the controller has to be designed with modulation technique, for both voltage and current at particular frequency following stabilization which is both simple in implementation and operation. And the comparative analysis of techniques used has to be carried out with AI-based optimization algorithms for studying its effectiveness. The results of the THD % of voltage in the system having no controller was found to be 3.32 %.  in the system having adaptive neural PSO switching of grid dynamics controller, the distortion level came down to 1.96%. The hybrid system with solar wind energy was further integrated with the grid and was analyzed for the rotor angle stability in the two machines. It was concluded that out of the three controls for grid dynamics controller the artificial intelligence-based adaptive neural PSO switching was found to be best with maximum stability of machines.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7372
Author(s):  
Nikolay Nikolaev ◽  
Kiril Dimitrov ◽  
Yulian Rangelov

This paper focuses on the methods that ensure the rotor angle stability of electric power systems, which is most frequently analyzed with small-signal models. Over the past several decades, power system stabilizers (PSSs) for conventional excitation systems were the main tools for improving the small-signal stability of electromechanical oscillatory modes. In the last decade, power oscillation damping (POD) control implemented in photovoltaic (PV) inverters has been considered an alternative to PSSs. As PV generation undergoes massive rollout due to policy directions and renewable energy source integration activities, it could potentially be used as a source of damping, which is crucial for sustaining the rotor angle stability of the remaining in-service synchronous generators. Several studies have already been dedicated to the development of different damping strategies. This paper contributes to the existing research in power system stability by providing a comprehensive review of the effects of PV generation on small-signal stability, as well as the recent evolution of POD control through PV inverters. The features and impacts of the various ways to realize POD controllers are assessed and summarized in this paper. Currently, detailed information and discussions on the practical application of PV inverter PODs are not available. This paper is, thus, intended to initiate a relevant discussion and propose possible implementation approaches concerning the topic under study.


2013 ◽  
Vol 28 (4) ◽  
pp. 4545-4557 ◽  
Author(s):  
Hjortur Johannsson ◽  
Arne Hejde Nielsen ◽  
Jacob Ostergaard

Sign in / Sign up

Export Citation Format

Share Document