scholarly journals Hybrid Power System Design for Damping Electromechanical Modes of Oscillation in Grid Connected Machines

Author(s):  
Syed Sanjar Ul Islam ◽  
Santosh kumar

Due to the natural intermittent nature of wind and solar PV, autonomous wind/PV systems for renewable energy typically require energy storage or other sources of production to form a hybrid system. in this paper objective of the designing of a grid dynamics controller equipped with IGBT based bridge structure for stabilizing various electrical parameters on the grid system while its renewable energy-based grid integration. And the controller has to be designed with modulation technique, for both voltage and current at particular frequency following stabilization which is both simple in implementation and operation. And the comparative analysis of techniques used has to be carried out with AI-based optimization algorithms for studying its effectiveness. The results of the THD % of voltage in the system having no controller was found to be 3.32 %.  in the system having adaptive neural PSO switching of grid dynamics controller, the distortion level came down to 1.96%. The hybrid system with solar wind energy was further integrated with the grid and was analyzed for the rotor angle stability in the two machines. It was concluded that out of the three controls for grid dynamics controller the artificial intelligence-based adaptive neural PSO switching was found to be best with maximum stability of machines.

2020 ◽  
pp. 26-38
Author(s):  
Pramod Kumar Meher ◽  
Mrs. Madhu Upadhyay

Stability is the most important feature required in the modern electrical system. In recent years, grid stability problems have been detected due to the rapid growth of electrical and electronic loads. To study the system performance under the effect renewable energy based generating units the kundur’s two area system has been taken as test system. The direct integration of these resources were studied for various instability issues like rotor angle stability, power stability at the generating points of machines and distortion level in the voltage and current waveforms of the grid system. The work has proposed a universal dynamic system optimizing control for system stability enhancement in all the aspects. The MATLAB/SIMULINK environment being the platform for the system designing and implementation, The effects on the two area four machines system has been studied by integrating wind energy system without dynamics optimization control in area 1and then systems with both solar and wind with the dynamic optimization controller at area 2 was developed. The study is further carried to integration of a fuel cell system in area 1 as well. The rotor angle stability and power stability at the point of generation bus was also stabilized by the proposed control in the power system.


Sign in / Sign up

Export Citation Format

Share Document