scholarly journals Rank metric and Gabidulin codes in characteristic zero

Author(s):  
Daniel Augot ◽  
Pierre Loidreau ◽  
Gwezheneg Robert
2017 ◽  
Vol 86 (9) ◽  
pp. 1983-1996 ◽  
Author(s):  
Ayoub Otmani ◽  
Hervé Talé Kalachi ◽  
Sélestin Ndjeya
Keyword(s):  

2017 ◽  
Vol 11 (3) ◽  
pp. 533-548 ◽  
Author(s):  
Anna-Lena Horlemann-Trautmann ◽  
◽  
Kyle Marshall ◽  

Author(s):  
Julian Renner ◽  
Sven Puchinger ◽  
Antonia Wachter-Zeh

AbstractWe propose the new rank-metric code-based cryptosystem which is based on the hardness of list decoding and interleaved decoding of Gabidulin codes. is an improved variant of the Faure–Loidreau (FL) system, which was broken in a structural attack by Gaborit, Otmani, and Talé Kalachi (GOT, 2018). We keep the FL encryption and decryption algorithms, but modify the insecure key generation algorithm. Our crucial observation is that the GOT attack is equivalent to decoding an interleaved Gabidulin code. The new key generation algorithm constructs public keys for which all polynomial-time interleaved decoders fail—hence resists the GOT attack. We also prove that the public-key encryption version of is IND-CPA secure in the standard model and the key encapsulation mechanisms version is IND-CCA2 secure in the random oracle model, both under hardness assumptions of formally defined problems related to list decoding and interleaved decoding of Gabidulin codes. We propose and analyze various exponential-time attacks on these problems, calculate their work factors, and compare the resulting parameters to NIST proposals. The strengths of are short ciphertext sizes and (relatively) small key sizes. Further, guarantees correct decryption and has no decryption failure rate. It is not based on hiding the structure of a code. Since there are efficient and constant-time algorithms for encoding and decoding Gabidulin codes, timing attacks on the encryption and decryption algorithms can be easily prevented.


Cryptography ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 32 ◽  
Author(s):  
Terry Lau ◽  
Chik Tan

We propose a rank metric codes based encryption based on the hard problem of rank syndrome decoding problem. We propose a new encryption with a public key matrix by considering the adding of a random distortion matrix over F q m of full column rank n. We show that IND-CPA security is achievable for our encryption under assumption of the Decisional Rank Syndrome Decoding problem. Furthermore, we also prove some bounds for the number of matrices of a fixed rank with entries over a finite field. Our proposal allows the choice of the error terms with rank up to r 2 , where r is the error-correcting capability of a code. Our encryption based on Gabidulin codes has public key size of 13 . 68 KB, which is 82 times smaller than the public key size of McEliece Cryptosystem based on Goppa codes. For similar post-quantum security level of 2 140 bits, our encryption scheme has a smaller public key size than the key size suggested by LOI17 Encryption.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


Sign in / Sign up

Export Citation Format

Share Document