time interleaved
Recently Published Documents


TOTAL DOCUMENTS

982
(FIVE YEARS 200)

H-INDEX

42
(FIVE YEARS 6)

Author(s):  
Vo Trung Dung Huynh ◽  
Linh Mai ◽  
Hung Ngoc Do ◽  
Minh Ngoc Truong Nguyen ◽  
Trung Kien Pham

<span>High-speed Terahertz communication systems has recently employed orthogonal frequency division multiplexing approach as it provides high spectral efficiency and avoids inter-symbol interference caused by dispersive channels. Such high-speed systems require extremely high-sampling <br /> time-interleaved analog-to-digital converters at the receiver. However, timing mismatch of time-interleaved analog-to-digital converters significantly causes system performance degradation. In this paper, to avoid such performance degradation induced by timing mismatch, we theoretically determine maximum tolerable mismatch levels for orthogonal frequency division multiplexing communication systems. To obtain these levels, we first propose an analytical method to derive the bit error rate formula for quadrature and pulse amplitude modulations in Rayleigh fading channels, assuming binary reflected gray code (BRGC) mapping. Further, from the derived bit error rate (BER) expressions, we reveal a threshold of timing mismatch level for which error floors produced by the mismatch will be smaller than a given BER. Simulation results demonstrate that if we preserve mismatch level smaller than 25% of this obtained threshold, the BER performance degradation is smaller than 0.5 dB as compared to the case without timing mismatch.</span>


Author(s):  
R.S. Karthic ◽  
R. Ragumadhavan ◽  
K.R. Aravind Britto ◽  
R. Vimala ◽  
M. Arivalagan

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 234
Author(s):  
Mauro D’Arco ◽  
Ettore Napoli ◽  
Efstratios Zacharelos ◽  
Leopoldo Angrisani ◽  
Antonio Giuseppe Maria Strollo

The time-base used by digital storage oscilloscopes allows limited selections of the sample rate, namely constrained to a few integer submultiples of the maximum sample rate. This limitation offers the advantage of simplifying the data transfer from the analog-to-digital converter to the acquisition memory, and of assuring stability performances, expressed in terms of absolute jitter, that are independent of the chosen sample rate. On the counterpart, it prevents an optimal usage of the memory resources of the oscilloscope and compels to post processing operations in several applications. A time-base that allows selecting the sample rate with very fine frequency resolution, in particular as a rational submultiple of the maximum rate, is proposed. The proposal addresses the oscilloscopes with time-interleaved converters, that require a dedicated and multifaceted approach with respect to architectures where a single monolithic converter is in charge of signal digitization. The proposed time-base allows selecting with fine frequency resolution sample rate values up to 200 GHz and beyond, still assuring jitter performances independent of the sample rate selection.


2021 ◽  
Author(s):  
Shravan Kumar Donthula ◽  
Supravat Debnath

This paper describes the implementation of a 4-channel, 10-bit, 1 GS/s time-interleaved analog to digital converter (TI-ADC) in 65nm CMOS technology. Each channel consists of interleaved T/H and ADC array operating at 250 MS/s, with each ADC array containing 14 timeinterleaved sub-ADCs. This configuration provides high sampling rate even though each subADC works at a moderate sampling rate. We have selected 10-bit successive approximation ADC (SAR ADC) as a sub-ADC, since this architecture is most suitable for low power and medium resolution. SAR ADC works on binary search algorithm, since it resolves 1-bit at a time. The target sampling rate was 20 MS/s in this design, however the sampling rate achieved is 15 MS/s. As a result, the 10-bit SAR ADC operates at 15 MS/s with power consumption of 560 μW at 1.2 V supply and achieves SNDR of 57 dB (i.e. ENOB 9.2 bits) near nyquist rate input. The resulting Figure of Merit (FoM) is 63.5 fJ/step. The achieved DNL and INL is +0.85\-0.9 LSB and +1\-1.1 LSB respectively. The 10-bit SAR ADC occupies an active area of 300 μm × 440 μm. The functionality of single channel TI-SAR ADC has been verified by simulation with input signal frequency of 33.2 MHz and clock frequency of 250 MHz. The desired SNDR of 59.3 dB has been achieved with power consumption of 11.6 mW. This results in a FoM value of 60 fJ/step.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3173
Author(s):  
Jingchao Lan ◽  
Danfeng Zhai ◽  
Yongzhen Chen ◽  
Zhekan Ni ◽  
Xingchen Shen ◽  
...  

A 2.5-GS/s 12-bit four-way time-interleaved pipelined-SAR ADC is presented in 28-nm CMOS. A bias-enhanced ring amplifier is utilized as the residue amplifier to achieve high bandwidth and excellent power efficiency compared with a traditional operational amplifier. A high linearity front-end is proposed to alleviate the non-linearity of the diode for ESD protection in the input PAD. The embedded input buffer can suppress the kickback noise at high input frequencies. A blind background calibration based on digital-mixing is used to correct the mismatches between channels. Additionally, an optional neural network calibration is also provided. The prototype ADC achieves a low-frequency SNDR/SFDR of 51.0/68.0 dB, translating a competitive FoMw of 0.48 pJ/conv.-step at 250 MHz input running at 2.5 GS/s.


2021 ◽  
Vol 11 (23) ◽  
pp. 11471
Author(s):  
Chia-Yi Wu ◽  
Haolin Li ◽  
Joris Van Kerrebrouck ◽  
Caro Meysmans ◽  
Piet Demeester ◽  
...  

Cell-free massive multiple-input multiple-output (MIMO) has attracted wide attention as wireless spectral efficiency has become a 6G key performance indicator. The distributed scheme improves the spectral efficiency and user fairness, but the fronthaul network must evolve to enable it. This work demonstrates a fronthaul network for distributed antenna systems enabled by the bit-interleaved sigma-delta-over-fiber (BISDoF) concept: multiple sigma-delta modulated baseband signals are time-interleaved into one non-return-to-zero (NRZ) signal, which is converted to the optical domain by a commercial QSFP and transmitted over fiber. The BISDoF concept improves the optical bit-rate efficiency while keeping the remote unit complexity sufficiently low. The implementation successfully deals with an essential challenge—precise frequency synchronization of different remote units. Moreover, owing to the straightforward data paths, all transceivers inherently transmit or receive with fixed timing offsets which can be easily calibrated. The error vector magnitudes of both the downlink and uplink data paths are less than 2.8% (–31 dB) when transmitting 40.96 MHz-bandwidth OFDM signals (256-QAM) centered around 3.6 GHz. (Optical path: 100 m multi-mode fibers; wireless path: electrical back-to-back.) Without providing an extra reference clock, the two remote units were observed to have the same carrier frequency; the standard deviation of the relative jitter was 9.43 ps.


2021 ◽  
Author(s):  
Ibrahim Alhousseiny ◽  
Mohamed Ali ◽  
Naim Ben-Hamida ◽  
Mohammad Honarparvar ◽  
Mohamad Sawan ◽  
...  

2021 ◽  
Author(s):  
Hongmei Chen ◽  
Lanyu Wang ◽  
Rui Xiao ◽  
Yongsheng Yin ◽  
Honghui Deng ◽  
...  

2021 ◽  
Author(s):  
Senji Liu ◽  
Xinpeng Xing ◽  
Lei Qian

Sign in / Sign up

Export Citation Format

Share Document