Adaptive Procedures for Discriminating Between Arbitrary Tensor-Product Quantum States

Author(s):  
Sarah Brandsen ◽  
Mengke Lian ◽  
Kevin D. Stubbs ◽  
Narayanan Rengaswamy ◽  
Henry D. Pfister
Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 82 ◽  
Author(s):  
Ying Yang ◽  
Chengyang Zhang ◽  
Huaixin Cao

Motivated by the Carleo’s work (Science, 2017, 355: 602), we focus on finding the neural network quantum statesapproximation of the unknown ground state of a given Hamiltonian H in terms of the best relative error and explore the influences of sum, tensor product, local unitary of Hamiltonians on the best relative error. Besides, we illustrate our method with some examples.


2021 ◽  
Author(s):  
Steven Duplij ◽  
Raimund Vogl

We propose a concept of quantum computing which incorporates an additional kind of uncertainty, i.e. vagueness (fuzziness), in a natural way by introducing new entities, obscure qudits (e.g. obscure qubits), which are characterized simultaneously by a quantum probability and by a membership function. To achieve this, a membership amplitude for quantum states is introduced alongside the quantum amplitude. The Born rule is used for the quantum probability only, while the membership function can be computed from the membership amplitudes according to a chosen model. Two different versions of this approach are given here: the “product” obscure qubit, where the resulting amplitude is a product of the quantum amplitude and the membership amplitude, and the “Kronecker” obscure qubit, where quantum and vagueness computations are to be performed independently (i.e. quantum computation alongside truth evaluation). The latter is called a double obscure-quantum computation. In this case, the measurement becomes mixed in the quantum and obscure amplitudes, while the density matrix is not idempotent. The obscure-quantum gates act not in the tensor product of spaces, but in the direct product of quantum Hilbert space and so called membership space which are of different natures and properties. The concept of double (obscure-quantum) entanglement is introduced, and vector and scalar concurrences are proposed, with some examples being given.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 418
Author(s):  
Ivan Šupić ◽  
Daniel Cavalcanti ◽  
Joseph Bowles

Self-testing protocols are methods to determine the presence of shared entangled states in a device independent scenario, where no assumptions on the measurements involved in the protocol are made. A particular type of self-testing protocol, called parallel self-testing, can certify the presence of copies of a state, however such protocols typically suffer from the problem of requiring a number of measurements that increases with respect to the number of copies one aims to certify. Here we propose a procedure to transform single-copy self-testing protocols into a procedure that certifies the tensor product of an arbitrary number of (not necessarily equal) quantum states, without increasing the number of parties or measurement choices. Moreover, we prove that self-testing protocols that certify a state and rank-one measurements can always be parallelized to certify many copies of the state. Our results suggest a method to achieve device-independent unbounded randomness expansion with high-dimensional quantum states.


2006 ◽  
Vol 04 (01) ◽  
pp. 219-232 ◽  
Author(s):  
WILLIAM K. WOOTTERS

In a 1991 paper, Asher Peres and the author theoretically analyzed a set of unentangled bipartite quantum states that could apparently be distinguished better by a global measurement than by any sequence of local measurements on the individual subsystems. The present paper returns to the same example, and shows that the best result so far achieved can alternatively be attained by a measurement that, while still global, is "unentangled" in the sense that the operator associated with each measurement outcome is a tensor product.


2019 ◽  
Vol 09 (03) ◽  
pp. 2050010
Author(s):  
Stephane Dartois ◽  
Luca Lionni ◽  
Ion Nechita

We study the joint distribution of the set of all marginals of a random Wishart matrix acting on a tensor product Hilbert space. We compute the limiting free mixed cumulants of the marginals, and we show that in the balanced asymptotical regime, the marginals are asymptotically free. We connect the matrix integrals relevant to the study of operators on tensor product spaces with the corresponding classes of combinatorial maps, for which we develop the combinatorial machinery necessary for the asymptotic study. Finally, we present some applications to the theory of random quantum states in quantum information theory.


Author(s):  
Ingemar Bengtsson ◽  
Karol Zyczkowski
Keyword(s):  

1990 ◽  
Vol 51 (8) ◽  
pp. 709-722 ◽  
Author(s):  
H.P. Breuer ◽  
K. Dietz ◽  
M. Holthaus

1994 ◽  
Vol 187 (Part_1) ◽  
pp. 156-156
Author(s):  
H.-J. Unger
Keyword(s):  

Author(s):  
Akitoshi ITAI ◽  
Arao FUNASE ◽  
Andrzej CICHOCKI ◽  
Hiroshi YASUKAWA

Sign in / Sign up

Export Citation Format

Share Document