Robust Active Force Controller for an Automotive Brake System

Author(s):  
Mohammed H. Al-Mola ◽  
M. Mailah ◽  
S. Kazi ◽  
A.H. Muhaimin ◽  
M.Y. Abdullah
2013 ◽  
Vol 10 (6) ◽  
pp. 523-528 ◽  
Author(s):  
A. Muzathik ◽  
Y. Nizam ◽  
M. Ahmad ◽  
W. Nik

Friction material in an automotive brake system plays an important role for effective and safe brake performance. A single material has never been sufficient to solve performance related issues. Current research aimed to examine properties of Boron mixed brake pads by comparing them with the commercial brake pads. Friction coefficient of Boron mixed brake pads and commercial brake pads were significantly different and increased with the increase in surface roughness. The abrupt reduction of friction coefficient is more significant in commercial brake pad samples than in Boron mixed brake pad formulations. Fade occurred in commercial brake pad sample at lower temperatures. Boron formulations are more stable than their commercial counterparts.


2014 ◽  
Vol 494-495 ◽  
pp. 155-158
Author(s):  
Lei Zhang ◽  
En Guo Dong ◽  
Jie Xun Lou

A conjoint simulation of suspension system and brake system is proposed based on vehicle braking performance and ride stability. A half car simulation model is built applying the software of MATLAB in which the dynamic load is used to control the active force for suspension system and adjust parameter value of ABS (Anti-lock brake system). The suspension system and ABS construction of the half car simulation model is illustrated in detail. Using the simulation model, the braking distance, the stroke for suspension and the pitch angle of body are measured in three status which include the individually control for active suspension, the individually control for ABS and the integration control respectively. The simulation data show that the integral control method synchronously ensures braking stability and riding stability.


1993 ◽  
Author(s):  
Michael J. Gutknecht ◽  
Daniel R. Schneidewend ◽  
John J. Moskwa ◽  
Charles R. Kime ◽  
Parameswaran Ramanathan

2014 ◽  
Vol 936 ◽  
pp. 2087-2093
Author(s):  
Xu Hui Liu ◽  
Liang Yao Yu ◽  
Liang Xu Ma

Brake-by-wire system is a new concept of brake system using electromechanical actuators instead of conventional hydraulic actuators. It is more compact, more efficient and responses faster than traditional brake systems. Magneto-rheological (MR) fluid is widely used due to its outstanding properties. In this paper, an MR based Brake-by-wire system with self-energizing capability were proposed and designed. It combined a typical single-disk-type MR brake with a wedge mechanism for self-energizing purpose. According to the torque analysis of the proposed MR brakes, the brake torque was significantly amplified. This research work presented a promising brake actuator, which allows MR fluids to be applied in automotive Brake-by-wire systems.


Sign in / Sign up

Export Citation Format

Share Document