friction material
Recently Published Documents


TOTAL DOCUMENTS

604
(FIVE YEARS 161)

H-INDEX

30
(FIVE YEARS 4)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 464
Author(s):  
Aleksander Yevtushenko ◽  
Piotr Grzes ◽  
Aleksander Ilyushenko ◽  
Andrey Liashok

This paper consists of two parts. The first one contains a description and methodology of the composite material used as friction material in clutches. Four variants of such material, differing in the type of carbon additive (the elemental graphite, pencil graphite and foundry coke powder of various fractions) were considered. Thermal conductivity, thermal diffusivity as well as the specific heat all materials were determined experimentally. On the inertial IM-58 stand, a simulation of the braking process of the friction pair consisting of a steel disc with friction material and a counterpart in the form of a homogeneous steel disc was carried out. On this basis, averaged coefficients of friction, unchanging in the entire sliding process, were found for the four friction pairs. The experimental data obtained in the first stage were used in the second stage to develop two (2D and 3D) numerical models of the friction heating process of the friction pairs under consideration. For four variants of the friction material, a comparative spatial-temporal temperature analysis was performed using both models. It was found that a simplified axisymmetric (2D) model can be used to estimate the maximum temperature with high accuracy. The lowest maximum temperature (115.6 °C) obtained for the same total friction work was achieved on the friction surface of the material with the addition of GP-1.


2021 ◽  
Author(s):  
Ibrahim Ahmed Ibrahim Ali ◽  
Saeed Asiri

Abstract This paper presents an innovative utility of Functionally Graded Aluminum Matrix Composite (FGAMC) with Silicon Carbide as a friction material in clutches since having an acceptable friction coefficient and high wear resistance. FGAMC’s properties were calculated using rule-of-mixture and power law, represented by layered geometry. FGAMC’s behavior is examined considering statics, dynamics, thermal and wear. Analyses were done using Finite Element method, by ANSYS. Results are discussed by comparing FGAMC’s clutch to Aluminum matrix composite with 20% of Silicon Carbide clutch and E-glass clutch. Clutches design based on the common size and working conditions of clutches in mid-size and heavy automobiles. Most analyses revels FGAMC’s clutch has higher strain than AMC’s clutch with less deformation in thickness direction and less stresses. FGAMC’s clutch has higher mass leading to lower first natural frequency but with low resulted deformations. Transient analyses showed 10 times fewer maximum deformations for FGAMC’s clutch than AMC and E-glass with lower strains and higher stress but in much less area for FGAMC’s clutch. Wear which indicates working life of a clutch, have been studied using Archard Wear Equation in ANSYS, FGAMC’s clutch has 10 times lower wear with much less affected area compared to AMC and E-glass. Thermal analysis results of the three clutches are close to each other with 0.07 watts between FGAMC’s and AMC’s clutches, and 0.03 watts between FGAMC’s and E-Glass’s clutches.


Author(s):  
A. Kulkarni ◽  
R. Mahale ◽  
C. Kannan

Repetitive use of the clutch, over a period of time, causes the friction material at the contact surfaces (clutch facing and flywheel/pressure plate) to wear, thus deteriorating its performance and usable life. The working life of a rigid clutch is the limiting factor when it comes to extracting maximum performance from a dual mass flywheel system, which is used in a lot of modern vehicles nowadays to lower fuel consumption and improve ride quality. In this study, we investigate the influence of different groove patterns on wear in rigid clutch facings and estimate their life using a comprehensive finite element model. The wear is calculated and analysed for five different groove patterns across two different inorganic materials, namely FTL180 and TF1600-MC2, using Archard’s Adhesive Wear Model. Coupled multi-physics elements are employed in the analysis to capture the effect of frictional heat generation on wear. We found that the Waffle pattern offered a decrease of 10.4% in volumetric wear loss, a 5.78% decrease in maximum wear thickness and an increase of 11.51% in the average working life is used in city like conditions with frequent engagements. This work sheds light on the impact of groove patterns on clutch facing wear and opens a new path for the design and development of more resilient rigid clutches.


Author(s):  
Asep Bayu Dani Nandiyanto ◽  
◽  
Alma Tyara Simbara ◽  
Gabriela Chelvina Santiuly Girsang ◽  
◽  
...  

This study aims to determine the effect of particle size and material composition on the performance of resin-based brake pads. Experiments were carried out by mixing 75% UPR with durian peel and banana midribs fibers using ratios of 1/1, 3/2, and 2/3 at particle sizes of 104 and 250 μm. The experimental results shows that decreasing the particle size improves the mechanical properties of brake pads, but gives a high wear value and a low coefficient of friction. In addition, an increase in the percentage of banana midrib fibers as a whole provides better brake pad performance. The results of the comparison between commercial-based brake pads confirm that agricultural waste is potential as an alternative to friction materials in brake pads. Brake pad with a fiber ratio of 2/3 104 μm had highest values of hardness, wear and friction coefficient, namely 20.33 N/cm3, 2.02 x 10-4 g/s.mm2, and 0.2465. while the 1/1 250 μm and 3/2 250 μm had the lowest coefficient values and compressive strength of 0.1195 and 9.14 N/cm3. This study demonstrates the use of biomass waste as an alternative to friction material to overcome the dangerous problem of using asbestos in brake pads.


Author(s):  
О.В. Башков ◽  
А.А. Афанасьева

В статье приведены результаты исследования фрикционных свойств и структуры нового композиционного фрикционного материала (КФМ). В ходе исследования были разработаны восемь перспективных составов КФМ, полученных методом порошковой металлургии. Фрикционные испытания новых материалов проводились на испытательной машине на трение и износ ИИ5018, оснащённой программным комплексом Tester 3.0, позволяющим точно фиксировать изменение момента трения в течение испытания с построением графика и автоматическим расчётом параметров трения. Методика испытаний позволила имитировать условия фрикционного взаимодействия, возникающие в муфтах электроприводов, применяемых в наземном и морском транспорте. По результатам испытаний оценивались величина коэффициента трения и его стабильность на протяжении цикла испытания и в диапазоне рабочих регулировок электропривода, а также износостойкость КФМ. На основании исследований структуры поверхности трения и качественной оценки стабильности коэффициента трения был определён оптимальный состав КФМ, способный обеспечить стабильную и безопасную работу электропривода в диапазоне рабочих регулировок. The article presents the results of a study of the frictional properties and structure of a new composite frictional material (CFM). In the course of the study, eight promising CFM compositions were developed, obtained by the method of powder metallurgy. Friction tests were carried out on a friction and wear testing machine II5018, equipped with the software package Tester 3.0, which allows registering the change in friction moment during the test with plotting and automatic calculation of friction parameters. The test technique made it possible to simulate the conditions of frictional interaction arising in the couplings of electric drives used in land and sea transport. After the tests, the value of the friction coefficient, its stability during the test cycle and in the range of operating adjustments of the electric drive and the wear resistance of the CFM were evaluated. Based on the analysis of the structure of the friction surface and a qualitative assessment of the stability of the coefficient of friction, the optimal composition of the CFM capable of ensuring stable and safe operation of the electric drive in the range of operating adjustments was determined.


2021 ◽  
Vol 9 (2) ◽  
pp. 017-023
Author(s):  
Anak Agung Alit Triadi ◽  
Sujita Darmo

The purpose of the study is to determine the best composition variation of the fifth variation of the composition of the composite material against the wear test, hardness test, tensile test comparing values ​​ with the safety standards of the brake lining composite SAEJ 661. Making the specimens was performed by mixing the ingredients with a mixer for 15 minutes and then do the process of compaction, with a load of 4 tons and detained achieve holding time is desired, then dies (mould) are placed in the oven and do the sintering process at a temperature of 1500 C for 180 minutes and specimens removed from the mould, the process of finishing and testing. These test results show that the composition of the material that is on variation V best price obtained 96.575 HBN hardness, wear rates of 1,29x10-6 gr / (mm2.detik), and a tensile strength of 0.842 MPa, but the brake friction material not meet safety standards SAEJ brake 661.


Sign in / Sign up

Export Citation Format

Share Document