Automatic processor lower bound formulas for array computations

Author(s):  
P. Cappello ◽  
O. Egecioglu
1998 ◽  
Vol 09 (04) ◽  
pp. 351-375 ◽  
Author(s):  
PETER CAPPELLO ◽  
ÖMER EĞECIOĞLU

Using a directed acyclic graph (dag) model of algorithms, we solve a problem related to precedence-constrained multiprocessor schedules for array computations: Given a sequence of dags and linear schedules parametrized by n, compute a lower bound on the number of processors required by the schedule as a function of n. In our formulation, the number of tasks that are scheduled for execution during any fixed time step is the number of non-negative integer solutions dn to a set of parametric linear Diophantine equations. We present an algorithm based on generating functions for constructing a formula for these numbers dn. The algorithm has been implemented as a Mathematica program. Example runs and the symbolic formulas for processor lower bounds automatically produced by the algorithm for Matrix-Vector Product, Triangular Matrix Product, and Gaussian Elimination problems are presented. Our approach actually solves the following more general problem: Given an arbitrary r× s integral matrix A and r-dimensional integral vectors b and c, let dn(n=0,1,…) be the number of solutions in non-negative integers to the system Az=nb+c. Calculate the (rational) generating function ∑n≥ 0dntn and construct a formula for dn.


2019 ◽  
Vol 485 (2) ◽  
pp. 142-144
Author(s):  
A. A. Zevin

Solutions x(t) of the Lipschitz equation x = f(x) with an arbitrary vector norm are considered. It is proved that the sharp lower bound for the distances between successive extremums of xk(t) equals π/L where L is the Lipschitz constant. For non-constant periodic solutions, the lower bound for the periods is 2π/L. These estimates are achieved for norms that are invariant with respect to permutation of the indices.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


Sign in / Sign up

Export Citation Format

Share Document