Power line interference cancellation in ECG signals using Alpha-Beta filter

Author(s):  
Shilpa Jamwal
2020 ◽  
Vol 24 (4) ◽  
pp. 381-392
Author(s):  
Ivan Dotsinsky ◽  
◽  
Todor Stoyanov ◽  
Georgy Mihov ◽  
◽  
...  

The acquired ECG signals are often contaminated by residual Power-line Interference (PLI). A lot of methods, algorithms and techniques for PLI reduction have been published over the last few decades. The so called subtraction procedure is known to eliminate almost totally the interference without affecting the signal spectrum. The goal of our research was to develop a heuristic version of the procedure intended for ECG signals with high Sampling Rate (SR) up to 128 kHz. The PLI is extracted from the corrupted signal by technique similar to second order band-pass filter but with practically zero phase error. The sample number as well as the left and right parts outside the samples belonging to a current sine wave, which is extracted from the contaminated signal, are counted and measured. They are used to compensate the error arising with the shift between the moving averaged free of PLI signal samples and their real position along the linear segments (usually PQ and TP intervals having frequency band near to zero). The here calculated PLI components are appropriately interpolated to ‘clean’ the dynamically changed in amplitude and position contaminated samples within the non-linear segments (QRS complexes and high T waves). The reported version of the subtraction procedure is tested with 5 and 128 kHz sampled ECG signals. The maximum absolute error is about 20 μV except for the ends of the recordings. Finally, an approach to PLI elimination from paced ECG signals is proposed. It includes pace pulse extraction, signal re-sampling down to 4 kHz and subtraction procedure implementation followed by adding back the removed pace pulses.


Author(s):  
Neethu Mohan ◽  
Sachin Kumar S ◽  
Prabaharan Poornachandran ◽  
Soman K.P

Power line interferences (PLI) occurring at 50/60 Hz can corrupt the biomedical recordings like ECG signals and which leads to an improper diagnosis of disease conditions. Proper interference cancellation techniques are therefore required for the removal of these power line disturbances from biomedical recordings. The non-linear time varying characteristics of biomedical signals make the<strong> </strong>interference removal a difficult task without compromising the actual signal characteristics. In this paper, a modified variational mode decomposition based approach is proposed for PLI removal from the ECG signals. In this approach, the central frequency of an intrinsic mode function is fixed corresponding to the normalized power line disturbance frequency. The experimental results show that the PLI interference is exactly captured both in magnitude and phase and are removed. The proposed approach is experimented with ECG signal records from MIT-BIH Arrhythmia database and compared with traditional notch filtering.


Sign in / Sign up

Export Citation Format

Share Document