notch filtering
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 36)

H-INDEX

14
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8062
Author(s):  
Yanping Li ◽  
Xiangdong Huang ◽  
Yi Zheng ◽  
Zhongke Gao ◽  
Lei Kou ◽  
...  

The existing adaptive echo cancellation based howling (typically in hearing aids) removal methods have several drawbacks such as insufficient attenuation of the howling component, slow response and nonlinear distortion. To solve these problems, we propose a segmented notch filtering based scheme. Specifically, firstly, it is proved that the attenuation value can reach −330 dB at any detected howling frequency; secondly, the filter coefficients can be readily calculated by a closed-form formula, yielding a fast response to the sudden howling accident; thirdly, the closed-form formula of this filter is theoretically an even function, indicating that this filter possesses a linear transfer characteristic. In combination with proper segmentation and precisely removing these transient samples arising from FIR (Finite Impulsive Response) filtering, nonlinear distortion can be entirely avoided. Experimental results show that our proposed scheme can not only accurately estimate the howling frequency, but can also completely remove it, which yields a high-quality output waveform with a recovery SNR of about 22 dB. Therefore, the proposed segmented notching based scheme possesses vast potential for hearing aid development and other relevant applications.


2021 ◽  
Author(s):  
Gaojian Liu ◽  
Okky Daulay ◽  
Qinggui Tan ◽  
Hongxi Yu ◽  
Marcel Hoekman ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258842
Author(s):  
Fumiya Mizukoshi ◽  
Hidetoshi Takahashi

In recent years, noisy bustling environments have created situations in which earmuffs must soundproof only specific noise while transmitting significant sounds, such as voices, for work safety and efficiency. Two sound insulation technologies have been utilized: passive noise control (PNC) and active noise control (ANC). However, PNC is incapable of insulating selective frequencies of noise, and ANC is limited to low-frequency sounds. Thus, it has been difficult for traditional earmuffs to cancel out only high-frequency noise that people feel uncomfortable hearing. Here, we propose an acoustic notch filtering earmuff utilizing Helmholtz resonator (HR) arrays that provides a sound attenuation effect around the tuneable resonant frequency. A sheet-like sound insulating plate comprising HR arrays is realized in a honeycomb structure. Since the resonant frequency is determined by the geometry of the HR arrays, a highly audible sound region can be designed as the target frequency. In this research, the acoustic notch filtering performance of the proposed HR array plate is investigated in both simulations and experiments. Furthermore, the fabricated earmuffs using the novel HR array plates achieve a sound insulation performance exceeding 40 dB at the target frequency, which is sufficiently high compared to that of conventional earmuffs. The experimental results confirm that the proposed device is a useful approach for insulating frequency-selective sound.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6593
Author(s):  
Ciarán McGeady ◽  
Aleksandra Vučković ◽  
Yong-Ping Zheng ◽  
Monzurul Alam

Transcutaneous electrical spinal cord stimulation (tSCS) is a non-invasive neuromodulatory technique that has in recent years been linked to improved volitional limb control in spinal-cord injured individuals. Although the technique is growing in popularity there is still uncertainty regarding the neural mechanisms underpinning sensory and motor recovery. Brain monitoring techniques such as electroencephalography (EEG) may provide further insights to the changes in coritcospinal excitability that have already been demonstrated using other techniques. It is unknown, however, whether intelligible EEG can be extracted while tSCS is being applied, owing to substantial high-amplitude artifacts associated with stimulation-based therapies. Here, for the first time, we characterise the artifacts that manifest in EEG when recorded simultaneously with tSCS. We recorded multi-channel EEG from 21 healthy volunteers as they took part in a resting state and movement task across two sessions: One with tSCS delivered to the cervical region of the neck, and one without tSCS. An offline analysis in the time and frequency domain showed that tSCS manifested as narrow, high-amplitude peaks with a spectral density contained at the stimulation frequency. We quantified the altered signals with descriptive statistics—kurtosis, root-mean-square, complexity, and zero crossings—and applied artifact-suppression techniques—superposition of moving averages, adaptive, median, and notch filtering—to explore whether the effects of tSCS could be suppressed. We found that the superposition of moving averages filter was the most successful technique at returning contaminated EEG to levels statistically similar to that of normal EEG. In the frequency domain, however, notch filtering was more effective at reducing the spectral power contribution of stimulation from frontal and central electrodes. An adaptive filter was more appropriate for channels closer to the stimulation site. Lastly, we found that tSCS posed no detriment the binary classification of upper-limb movements from sensorimotor rhythms, and that adaptive filtering resulted in poorer classification performance. Overall, we showed that, depending on the analysis, EEG monitoring during transcutaneous electrical spinal cord stimulation is feasible. This study supports future investigations using EEG to study the activity of the sensorimotor cortex during tSCS, and potentially paves the way to brain–computer interfaces operating in the presence of spinal stimulation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Minjae Kim ◽  
Yaejin Moon ◽  
Jasmine Hunt ◽  
Kelly A. McKenzie ◽  
Adam Horin ◽  
...  

Transcutaneous spinal cord electrical stimulation (tSCS) is an emerging technology that targets to restore functionally integrated neuromuscular control of gait. The purpose of this study was to demonstrate a novel filtering method, Artifact Component Specific Rejection (ACSR), for removing artifacts induced by tSCS from surface electromyogram (sEMG) data for investigation of muscle response during walking when applying spinal stimulation. Both simulated and real tSCS contaminated sEMG data from six stroke survivors were processed using ACSR and notch filtering, respectively. The performance of the filters was evaluated with data collected in various conditions (e.g., simulated artifacts contaminating sEMG in multiple degrees, various tSCS intensities in five lower-limb muscles of six participants). In the simulation test, after applying the ACSR filter, the contaminated-signal was well matched with the original signal, showing a high correlation (r = 0.959) and low amplitude difference (normalized root means square error = 0.266) between them. In the real tSCS contaminated data, the ACSR filter showed superior performance on reducing the artifacts (96% decrease) over the notch filter (25% decrease). These results indicate that ACSR filtering is capable of eliminating artifacts from sEMG collected during tSCS application, improving the precision of quantitative analysis of muscle activity.


Author(s):  
Rahmad Hidayat ◽  
Ninik Sri Lestari ◽  
Herawati Herawati ◽  
Givy Devira Ramady ◽  
Sudarmanto Sudarmanto ◽  
...  

An electrocardiogram (ECG) is a means of measuring and monitoring important signals from heart activity. One of the major biomedical signal issues such as ECG is the issue of separating the desired signal from noise or interference. Different kinds of digital filters are used to distinguish the signal components from the unwanted frequency range to the ECG signal. To address the question of noise to the ECG signal, in this paper the digital notch filter IIR 47 Hz is designed and simulated to demonstrate the elimination of 47 Hz noise to obtain an accurate ECG signal. The full architecture of the structure and coefficient of the IIR notch filter was carried out using the FDA Tool. Then the model is finished with the help of Simulink and the MATLAB script was to filter out the 47 Hz noise from the signal of ECG. For this purpose, the normalized least mean square (NLMS) algorithm was used. The results indicate that before being filtered and after being filtered it clearly shows the elimination of 47 Hz noise in the signal of the ECG. These results also show the accuracy of the design technique and provide an easy model to filter out noise in the ECG signal.


2021 ◽  
Author(s):  
Alston L. Emmanuel ◽  
Xavier N. Fernando

This thesis focuses on transmitted-reference ultra wideband (TR-UWB) systems coexistence with IEEE802.11a WLAN systems. TR-UWB systems can relax the difficult synchronization requirements and can provide a simple receiver architecture that gathers the energy from many resolvable multipath components. However, UWB TR systems are susceptible to interference which comes from other wireless systems. In this thesis, TR-UWB system performance is studied in the presence of strong IEEE 802.11a WLAN interference in both AWGN and IEEE channel model. In order to reduce both the effects of interference by and into UWB signals, we propose a new method in conjunction with a multi-carrier type transmission pulse using wavelet analysis and notch filtering. Using wavelet analysis, spectral density of the transmitted UWB signal around the interfering band is reduced by 60 dB lower than the peak. With the modified TR-UWB receiver, the TR-UWB system shows performance improvement in the presence of strong IEEE 8-2.11a interference in both AWGN and IEEE channel models. The proposed method can be used for the coexistence of different wireless systems with UWB system.


2021 ◽  
Author(s):  
Alston L. Emmanuel ◽  
Xavier N. Fernando

This thesis focuses on transmitted-reference ultra wideband (TR-UWB) systems coexistence with IEEE802.11a WLAN systems. TR-UWB systems can relax the difficult synchronization requirements and can provide a simple receiver architecture that gathers the energy from many resolvable multipath components. However, UWB TR systems are susceptible to interference which comes from other wireless systems. In this thesis, TR-UWB system performance is studied in the presence of strong IEEE 802.11a WLAN interference in both AWGN and IEEE channel model. In order to reduce both the effects of interference by and into UWB signals, we propose a new method in conjunction with a multi-carrier type transmission pulse using wavelet analysis and notch filtering. Using wavelet analysis, spectral density of the transmitted UWB signal around the interfering band is reduced by 60 dB lower than the peak. With the modified TR-UWB receiver, the TR-UWB system shows performance improvement in the presence of strong IEEE 8-2.11a interference in both AWGN and IEEE channel models. The proposed method can be used for the coexistence of different wireless systems with UWB system.


2021 ◽  
Author(s):  
Fumiya Mizukoshi ◽  
Hidetoshi Takahashi

Abstract In recent years, noisy bustling environments have created situations in which earmuffs must soundproof only specific noise while transmitting significant sounds, such as voices, for work safety and efficiency. Two sound insulation technologies have been utilized: passive noise control (PNC) and active noise control (ANC). However, PNC is incapable of insulating selective frequencies of noise, and ANC is limited to low-frequency sounds. Thus, it has been difficult for traditional earmuffs to cancel out only high-frequency noise that people feel uncomfortable hearing. Here, we propose an acoustic notch filtering earmuff utilizing Helmholtz resonator (HR) arrays that provides a sound attenuation effect around the tuneable resonant frequency. A sheet-like sound insulating plate comprising HR arrays is realized in a honeycomb structure. Since the resonant frequency is determined by the geometry of the HR arrays, a highly audible sound region can be designed as the target frequency. In this research, the acoustic notch filtering performance of the proposed HR array plate was investigated in both simulations and experiments. Furthermore, the fabricated earmuffs using the novel HR array plates achieved a sound insulation performance exceeding 40 dB at the target frequency, which is sufficiently high compared to conventional earmuffs. The experimental results confirm that the proposed device is a useful approach for insulating frequency-selective sound.


2021 ◽  
Vol 1871 (1) ◽  
pp. 012008
Author(s):  
Yinguang He ◽  
Fei Gao ◽  
Ziyi Gong ◽  
Hongxing Dang ◽  
Xiaomin Tan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document