Multi-objective vehicle path planning method for recycling process of used electrical and electronic products

Author(s):  
Cuili Yang ◽  
Zhanhong Wu ◽  
Honggui Han ◽  
Xiaowen Bi
2019 ◽  
Vol 27 (3) ◽  
pp. 3257-3270
Author(s):  
Yan Chun Zheng ◽  
Juan Wang ◽  
Dong Guo ◽  
Hai Zhang ◽  
Chao Chao Li ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Guo Liang Han

This paper analyzes the path planning problem in the automatic parking process, and studies a path planning method for automatic parking. The grid method and the ant colony optimization are combined to find the shortest path from the parking start point to the end point. The grid method is used to model the parking environment to simulate the actual parking space of automatic parking; then this paper makes some improvements to the basic ant colony optimization, finds the destination by setting the ants’ movement rules in the grid, and finds the shortest path after N iterations; since the optimal path found is a polyline, it will increase the difficulty of controlling vehicle path tracking and affect the accuracy of vehicle path tracking. The bezier curve is used to generate a smooth path suitable for vehicle walking. Finally, through matlab simulation, the obstacles in the environment are simulated, and the parking trajectory is obtained. The results show that the path planning method proposed in this paper is feasible.


Author(s):  
Venkata Sirimuvva Chirala ◽  
Saravanan Venkatachalam ◽  
Jonathon Smereka ◽  
Sam Kassoumeh

Abstract There has been unprecedented development in the field of unmanned ground vehicles (UGVs) over the past few years. UGVs have been used in many fields including civilian and military with applications such as military reconnaissance, transportation, and search and research missions. This is due to their increasing capabilities in terms of performance, power, and tackling risky missions. The level of autonomy given to these UGVs is a critical factor to consider. In many applications of multi-robotic systems like “search-and-rescue” missions, teamwork between human and robots is essential. In this paper, given a team of manned ground vehicles (MGVs) and unmanned ground vehicles (UGVs), the objective is to develop a model which can minimize the number of teams and total distance traveled while considering human-robot interaction (HRI) studies. The human costs of managing a team of UGVs by a manned ground vehicle (MGV) are based on human-robot interaction (HRI) studies. In this research, we introduce a combinatorial, multi objective ground vehicle path planning problem which takes human-robot interactions into consideration. The objective of the problem is to find: ideal number of teams of MGVs-UGVs that follow a leader-follower framework where a set of UGVs follow an MGV; and path for each team such that the missions are completed efficiently.


Sign in / Sign up

Export Citation Format

Share Document