scholarly journals High precision indoor positioning by means of LiDAR

Author(s):  
E. Sanchez ◽  
M. Botsch ◽  
B. Huber ◽  
A. Garcia
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3701
Author(s):  
Ju-Hyeon Seong ◽  
Soo-Hwan Lee ◽  
Won-Yeol Kim ◽  
Dong-Hoan Seo

Wi-Fi round-trip timing (RTT) was applied to indoor positioning systems based on distance estimation. RTT has a higher reception instability than the received signal strength indicator (RSSI)-based fingerprint in non-line-of-sight (NLOS) environments with many obstacles, resulting in large positioning errors due to multipath fading. To solve these problems, in this paper, we propose high-precision RTT-based indoor positioning system using an RTT compensation distance network (RCDN) and a region proposal network (RPN). The proposed method consists of a CNN-based RCDN for improving the prediction accuracy and learning rate of the received distances and a recurrent neural network-based RPN for real-time positioning, implemented in an end-to-end manner. The proposed RCDN collects and corrects a stable and reliable distance prediction value from each RTT transmitter by applying a scanning step to increase the reception rate of the TOF-based RTT with unstable reception. In addition, the user location is derived using the fingerprint-based location determination method through the RPN in which division processing is applied to the distances of the RTT corrected in the RCDN using the characteristics of the fast-sampling period.


2015 ◽  
Vol 734 ◽  
pp. 31-39
Author(s):  
Wen Yang Cai ◽  
Gao Yong Luo

The increasing demand for high precision indoor positioning in many public services has urged research to implement cost-effective systems for a rising number of applications. However, current systems with either short-range positioning technology based on wireless local area networks (WLAN) and ZigBee achieving meter-level accuracy, or ultra-wide band (UWB) and 60 GHz communication technology achieving high precision but with high cost required, could not meet the need of indoor wireless positioning. This paper presents a new method of high precision indoor positioning by autocorrelation phase measurement of spread spectrum signal utilizing carrier frequency lower than 1 GHz, thereby decreasing power emission and hardware cost. The phase measurement is more sensitive to the distance of microwave transmission than timing, thus achieving higher positioning accuracy. Simulation results demonstrate that the proposed positioning method can achieve high precision of less than 1 centimeter decreasing when various noise and interference added.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 86874-86883 ◽  
Author(s):  
Jin Ren ◽  
Yunan Wang ◽  
Changliu Niu ◽  
Wei Song

2022 ◽  
Vol 2160 (1) ◽  
pp. 012074
Author(s):  
Yong Cao ◽  
Yifan Zheng ◽  
Xiao Wang ◽  
Yanbo Liu ◽  
Yi Liu

Abstract Indoor positioning has become a research hotspot because of its important application value in industrial production and daily life. Traditional wireless positioning technologies such as Wi Fi and Bluetooth are difficult to achieve high-precision indoor positioning due to electromagnetic interference and multipath effect. The modulated white LED can not only meet the needs of lighting, but also transmit the location information to achieve high-precision indoor positioning. This paper first introduces several modulation methods commonly used in visible light positioning system, compares the characteristics of different modulation methods, and proposes a modulation method suitable for visible light positioning; Then, two demodulation methods of the visible light positioning system are introduced and discussed; After that, several visible light location algorithms are introduced, and the performance of each algorithm is analyzed in detail; Finally, the problems in visible light positioning are discussed and prospected.


Sign in / Sign up

Export Citation Format

Share Document