Path-loss exponents of ultra wideband signals in line-of-sight environments

Author(s):  
S. Sato ◽  
T. Kobayashi
2017 ◽  
Vol 10 (2) ◽  
pp. 141-148
Author(s):  
Abdelmadjid Maali ◽  
Geneviève Baudoin ◽  
Ammar Mesloub

In this paper, we propose a novel energy detection (ED) receiver architecture combined with time-of-arrival (TOA) estimation algorithm, compliant to the IEEE 802.15.4a standard. The architecture is based on double overlapping integrators and a sliding correlator. It exploits a series of ternary preamble sequences with perfect autocorrelation property. This property ensures coding gain, which allows an accurate estimation of power delay profile (PDP). To improve TOA estimation, the interpolation of PDP samples is proposed and the architecture is validated by using an ultra-wideband signals measurements platform. These measurements are carried out in line-of-sight and non-line-of-sight multipath environments. The experimental results show that the ranging performances obtained by the proposed architecture are higher than those obtained by the conventional architecture based on a single-integrator in both LOS and NLOS environments.


2020 ◽  
Vol 10 (1) ◽  
pp. 335 ◽  
Author(s):  
Ahmed M. Al-Samman ◽  
Marwan Hadri Azmi ◽  
Y. A. Al-Gumaei ◽  
Tawfik Al-Hadhrami ◽  
Tharek Abd. Rahman ◽  
...  

In future 5G systems, the millimeter wave (mmWave) band will be used to support a large capacity for current mobile broadband. Therefore, the radio access technology (RAT) should be made available for 5G devices to help in distinct situations, for example device-to-device communications (D2D) and multi-hops. This paper presents ultra-wideband channel measurements for millimeter wave bands at 19, 28, and 38 GHz. We used an ultra-wideband channel sounder (1 GHz bandwidth) in an indoor to outdoor (I2O) environment for non-line-of-sight (NLOS) scenarios. In an NLOS environment, there is no direct path (line of sight), and all of the contributed paths are received from different physical objects by refection propagation phenomena. Hence, in this work, a directional horn antenna (high gain) was used at the transmitter, while an omnidirectional antenna was used at the receiver to collect the radio signals from all directions. The path loss and temporal dispersion were examined based on the acquired measurement data—the 5G propagation characteristics. Two different path loss models were used, namely close-in (CI) free space reference distance and alpha-beta-gamma (ABG) models. The time dispersion parameters were provided based on a mean excess delay, a root mean square (RMS) delay spread, and a maximum excess delay. The path loss exponent for this NLOS specific environment was found to be low for all of the proposed frequencies, and the RMS delay spread values were less than 30 ns for all of the measured frequencies, and the average RMS delay spread values were 19.2, 19.3, and 20.3 ns for 19, 28, and 38 GHz frequencies, respectively. Moreover, the mean excess delay values were found also at 26.1, 25.8, and 27.3 ns for 19, 28, and 38 GHz frequencies, respectively. The propagation signal through the NLOS channel at 19, 28, and 38 GHz was strong with a low delay; it is concluded that these bands are reliable for 5G systems in short-range applications.


2008 ◽  
Vol 57 (4) ◽  
pp. 2014-2026 ◽  
Author(s):  
David W. Matolak ◽  
Indranil Sen ◽  
Wenhui Xiong

We describe results from a channel measurement and modeling campaign for the airport surface environment in the 5-GHz band. Using a 50-MHz bandwidth test signal, thousands of power delay profiles (PDPs) were obtained and processed to develop empirical tapped-delay line statistical channel models for large airports. A log-distance path loss model was also developed. The large airport surface channel is classified into three propagation regions, and models are presented for each of the regions for two values of bandwidth. Values of the median root-mean-square (RMS) delay spread range from 500 to 1000 ns for these airports, with the 90 th percentile RMS delay spreads being approximately 1.7 ms. Corresponding correlation bandwidths (i.e., correlation value 1/2) range from approximately 1.5 MHz in non-line-of-sight (NLOS) settings to 17.5 MHz in line-of-sight (LOS) settings. Two types of statistical nonstationarity were also observed: 1) multipath component persistence and 2) propagation region transitions. We provide the multipath component probability of occurrence models and describe Markov chains that are used for modeling both phenomena. Channel tap amplitude statistics are also provided, using the flexible Weibull probability density function (pdf). This pdf was found to best fit fading tap amplitude data, particularly for frequently observed severe fading, which is characterized by fade probabilities that are worse than the commonly used Rayleigh model. Fading parameters equivalent to Nakagami-m-model values ofmnear 0.7 were often observed (withm= 1 being Rayleigh and m < 1 being worse than Rayleigh). We also provide channel tap amplitude correlation coefficients, which typically range from 0.1 to 0.4 but occasionally take values greater than 0.7.


2016 ◽  
Vol 04 (01) ◽  
pp. 23-34 ◽  
Author(s):  
Kexin Guo ◽  
Zhirong Qiu ◽  
Cunxiao Miao ◽  
Abdul Hanif Zaini ◽  
Chun-Lin Chen ◽  
...  

Micro unmanned aerial vehicles (UAVs) are promising to play more and more important roles in both civilian and military activities. Currently, the navigation of UAVs is critically dependent on the localization service provided by the Global Positioning System (GPS), which suffers from the multipath effect and blockage of line-of-sight, and fails to work in an indoor, forest or urban environment. In this paper, we establish a localization system for quadcopters based on ultra-wideband (UWB) range measurements. To achieve the localization, a UWB module is installed on the quadcopter to actively send ranging requests to some fixed UWB modules at known positions (anchors). Once a distance is obtained, it is calibrated first and then goes through outlier detection before being fed to a localization algorithm. The localization algorithm is initialized by trilateration and sustained by the extended Kalman filter (EKF). The position and velocity estimates produced by the algorithm will be further fed to the control loop to aid the navigation of the quadcopter. Various flight tests in different environments have been conducted to validate the performance of UWB ranging and localization algorithm.


Sign in / Sign up

Export Citation Format

Share Document