scholarly journals Improved energy detection receiver for ranging in IEEE 802.15.4a standard

2017 ◽  
Vol 10 (2) ◽  
pp. 141-148
Author(s):  
Abdelmadjid Maali ◽  
Geneviève Baudoin ◽  
Ammar Mesloub

In this paper, we propose a novel energy detection (ED) receiver architecture combined with time-of-arrival (TOA) estimation algorithm, compliant to the IEEE 802.15.4a standard. The architecture is based on double overlapping integrators and a sliding correlator. It exploits a series of ternary preamble sequences with perfect autocorrelation property. This property ensures coding gain, which allows an accurate estimation of power delay profile (PDP). To improve TOA estimation, the interpolation of PDP samples is proposed and the architecture is validated by using an ultra-wideband signals measurements platform. These measurements are carried out in line-of-sight and non-line-of-sight multipath environments. The experimental results show that the ranging performances obtained by the proposed architecture are higher than those obtained by the conventional architecture based on a single-integrator in both LOS and NLOS environments.

Author(s):  
Mustapha Djeddou ◽  
Hichem Zeher ◽  
Younes Nekachtali

Purpose – The paper aims to propose a new method for estimating the time of arrival (TOA) of ultra-wideband (UWB) signals under IEEE 802.15.4a multipath channel model. Design/methodology/approach – The proposed approach is based on a proportionality test and consists in finding out whether two autoregressive (AR) processes, modeling two frames, are proportional or not. The latter operation uses a distance to measure the proportionality between the two AR processes. Findings – The developed technique may be used in two ways, sample-by-sample or block-by-block, according to the required ranging accuracy. It is important to note that the method offers flexibility between the computational load and the needed estimation accuracy. Moreover, the proposed method uses a threshold that is derived analytically according to a preset false alarm probability. Practical implications – Simulation experiments are conducted to assess the performance of the new TOA estimation algorithm. Thereby, the comparison is done against the well-known CLEAN algorithm for a sample-by-sample based TOA estimation and against three energy detector based receiver algorithms. The obtained results highlight the effectiveness of the developed approach. Originality/value – The developed TOA estimation algorithm is completely different from other techniques in the literature, and it is based on a proportionality test between two sliding frames. These latter are modeled by two AR processes. Then a distance measure is used to check whether or not the power spectral densities are proportional.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Liangliang Gong ◽  
Yang Hu ◽  
Junyao Zhang ◽  
Gaofeng Zhao

The ultra-wideband (UWB) system, which transmits information using nanosecond or even sub-nanosecond pulses, has been widely applied in precise positioning. In this paper, we investigate the problem of the time of arrival (TOA) estimation and the direction of arrival (DOA) estimation in the UWB systems with antenna array and propose a joint TOA and DOA estimation algorithm with doubled frequency sample points and extended number of clusters. Specifically, the proposed algorithm uses two antennas to receive impinging signals and utilizes the conjugate symmetry characteristic of the delay matrices to extend the sample points as well as the number of clusters. Moreover, in order to obtain TOA estimates with low computational complexity, the proposed algorithm transforms the two-dimensional (2D) spectral search to one-dimensional (1D) searches. The DOA estimates can then be achieved by using the TOA estimation results and the geometric information. Simulation results are given to testify the performance of the proposed algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
N. Awarkeh ◽  
J.-C. Cousin ◽  
M. Muller ◽  
N. Samama

This paper shows that the accuracy of azimuth angle measurement for an interferometric localization system used to locate tags in its Line-of-Sight (LoS) can be improved by exploiting Impulse Radio-Ultra WideBand (IR-UWB) signals and without increasing the frequency bandwidth. This solution uses a Phase Correlation (PC) method, initially applied for Continuous Wave (CW) signals, adapted for Ultra WideBand (UWB) pulse signals. The obtained results are compared to those computed by a classical Energy Detection (ED) method where it becomes impossible to estimate azimuth angles for tag positions close to the orthogonal centered axis of the localization system baseline.


2012 ◽  
Vol 433-440 ◽  
pp. 2656-2662
Author(s):  
Xue Rong Cui ◽  
Li Zhang ◽  
Hao Zhang ◽  
T. Aaron Gulliver

This paper presents a novel location algorithm for Ultra-Wideband (UWB) wireless communication based on Time Of Arrival (TOA) measurements. The traditional algorithm and mean value algorithm are compared with the proposed high probability algorithm in a three-dimensional (3D) indoor environment. The IEEE802.15.4a channel model is considered with Line-of-Sight (LOS) and Non-Line-Of-Sight (NLOS) propagation conditions, models CM1 and CM2, respectively. Performance results are presented which verify that the proposed algorithm can provide improved accuracy and robustness compared to other algorithms, particularly in poor channel environments.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 440 ◽  
Author(s):  
Jing Xin ◽  
Kaiyuan Gao ◽  
Mao Shan ◽  
Bo Yan ◽  
Ding Liu

Ultra-wideband (UWB) sensors have been widely used in multi-robot systems for cooperative tracking and positioning purposes due to their advantages such as high ranging accuracy and good real-time performance. In order to reduce the influence of non-line-of-sight (NLOS) UWB communication caused by the presence of obstacles on ranging accuracy in indoor environments, the paper proposes a novel Bayesian filtering approach for UWB ranging error mitigation. Nonparametric UWB sensor models, namely received signal strength (RSS) model and time of arrival (TOA) model, are constructed to capture the probabilistic noise characteristics under the influence of different obstruction conditions and materials within a typical indoor environment. The proposed Bayesian filtering approach can be used either as a standalone error mitigation approach for peer-to-peer (P2P) ranging, or as a part of a higher level Bayesian state estimation framework. Experiments were conducted to validate and evaluate the proposed approach in two configurations, i.e., inter-robot ranging, and mobile robot tracking in a wireless sensor network. The experimental results show that the proposed method can accurately identify the line-of-sight (LOS) and NLOS scenarios with wood and metal obstacles in a probabilistic representation and effectively improve the ranging/tracking accuracy. In addition, the low computational overhead of the approach makes it attractive in real-time systems.


2019 ◽  
Vol 18 (5-6) ◽  
pp. 1652-1668
Author(s):  
Jingru Zhou ◽  
V John Mathews ◽  
Daniel O Adams

In this article, an acoustic emission–based impact location estimation algorithm is presented for use with composite structures. The algorithm is formulated as a constrained optimization problem by utilizing sensor locations and times of arrival of impact signals at the sensors. The impact locations are estimated without any information about wave propagation velocity in the structure. A modification of the algorithm to overcome difficulties produced by waveform reflections enables accurate estimation of impact locations close to the structure’s boundaries. The capability of this algorithm to accurately estimate impact locations is demonstrated numerically and experimentally. Experiments performed at different temperatures showed that the algorithm is robust to temperature changes. An automatic time-of-arrival estimation method is also presented. The performance capabilities of the method and its computational simplicity make this approach an attractive alternative to other methods available in the literature for practical structural health monitoring applications.


2014 ◽  
Vol 568-570 ◽  
pp. 218-222
Author(s):  
Rui Li ◽  
Dian Ren Chen

Nyquist Folding Receiver is a novel reconnaissance receiver structure which is able to use single ADC to sample Ultra-wideband signals. And the Synchronous Nyquist Folding Receiver (SNYFR) is an improved structure of NYFR. When input is multicomponent single-frequency signal, with the consideration of the characteristics of the output we propose an algorithm of Nyquist Zone(NZ) judgment and parameters estimation based on scaling search in Fractional Fourier Transform (FRFT) domain to avoid detection error occurring when the input signal components locate in the NZ fuzzy area. Computer simulation show that when SNR beyond, the Probability of Correct Decision(PCD) of signal detection can be achieved 100% and the mean square error of parameters estimation can be approached Cramer-Rao Bound(CRB) simultaneously.


Sign in / Sign up

Export Citation Format

Share Document