Optimal planning of public fast charging station on residential power distribution system

Author(s):  
Nopbhorn Leeprechanon ◽  
Prakornchai Phonrattanasak ◽  
Mahesh Kumar Sharma
Author(s):  
Thanat Jensanyayut ◽  
Tipthacha Phongtrakul ◽  
Kulsomsap Yenchamchalit ◽  
Yuttana Kongjeen ◽  
Krischonme Bhumkittipich ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 4870
Author(s):  
Andrés Arias-Londoño ◽  
Walter Gil-González ◽  
Oscar Danilo Montoya

Transportation electrification has demonstrated a significant position on power utilities and logistic companies, in terms of assets operation and management. Under this context, this paper presents the problem of seeking feasible and good quality routes for electric light commercial vehicles considering battery capacity and charging station siting on the power distribution system. Different transportation patterns for goods delivery are included, such as the capacitated vehicle routing problem and the shortest path problem for the last mile delivery. To solve the problem framed within a mixed integer linear mathematical model, the GAMS software is used and validated on a test instance conformed by a 19-customer transportation network, spatially combined with the IEEE 34 nodes power distribution system. The sensitivity analysis, performed during the computational experiments, show the behavior of the variables involved in the logistics operation, i.e., routing cost for each transport pattern. The trade-off between the battery capacity, the cost of the charging station installation, and energy losses on the power distribution system is also shown, including the energy consumption cost created by the charging operation.


2022 ◽  
pp. 91-106
Author(s):  
Manikanta Surya Narayana Suri ◽  
Deepa Kaliyaperumal

Electric vehicles will play a dominant role in future transportation due to their friendliness towards the present day environment. The battery which drives the vehicle can be refilled using battery charging and battery swapping techniques. Fast charging stations provide faster service to the customers. Though battery swapping method outperforms battery charging in many ways, the heavy infrastructure requirement of the former requires time in integrating with the real world. Queuing models are used to depict the real-time behavior of service stations. The aspiration level model provides the optimal value of charging piles for the given system capacity in a fast-charging station. The parameters in the aspiration level model can be formulated to an optimization problem. In the present work, the optimal planning for an fast charging station in Beijing is carried out using genetic algorithm. The simulation work is carried out in MATLAB/Simulink.


Sign in / Sign up

Export Citation Format

Share Document