A simulation platform for energy-efficient dynamic commuter transit using electric vehicles

Author(s):  
Bowen Zhang ◽  
Wei Li ◽  
Tao Chen ◽  
Wencong Su
2021 ◽  
Vol 13 (8) ◽  
pp. 4549
Author(s):  
Sara Salamone ◽  
Basilio Lenzo ◽  
Giovanni Lutzemberger ◽  
Francesco Bucchi ◽  
Luca Sani

In electric vehicles with multiple motors, the torque at each wheel can be controlled independently, offering significant opportunities for enhancing vehicle dynamics behaviour and system efficiency. This paper investigates energy efficient torque distribution strategies for improving the operational efficiency of electric vehicles with multiple motors. The proposed strategies are based on the minimisation of power losses, considering the powertrain efficiency characteristics, and are easily implementable in real-time. A longitudinal dynamics vehicle model is developed in Simulink/Simscape environment, including energy models for the electrical machines, the converter, and the energy storage system. The energy efficient torque distribution strategies are compared with simple distribution schemes under different standardised driving cycles. The effect of the different strategies on the powertrain elements, such as the electric machine and the energy storage system, are analysed. Simulation results show that the optimal torque distribution strategies provide a reduction in energy consumption of up to 5.5% for the case-study vehicle compared to simple distribution strategies, also benefiting the battery state of charge.


2021 ◽  
Vol 11 (13) ◽  
pp. 6005
Author(s):  
Daniel Villanueva ◽  
Moisés Cordeiro-Costas ◽  
Andrés E. Feijóo-Lorenzo ◽  
Antonio Fernández-Otero ◽  
Edelmiro Miguez-García

The aim of this paper is to shed light on the question regarding whether the integration of an electric battery as a part of a domestic installation may increase its energy efficiency in comparison with a conventional case. When a battery is included in such an installation, two types of electrical conversion must be considered, i.e., AC/DC and DC/AC, and hence the corresponding losses due to these converters must not be forgotten when performing the analysis. The efficiency of the whole system can be increased if one of the mentioned converters is avoided or simply when its dimensioning is reduced. Possible ways to achieve this goal can be: to use electric vehicles as DC suppliers, the use of as many DC home devices as possible, and LED lighting or charging devices based on renewables. With all this in mind, several scenarios are proposed here in order to have a look at all possibilities concerning AC and DC powering. With the aim of checking these scenarios using real data, a case study is analyzed by operating with electricity consumption mean values.


2018 ◽  
Vol 4 (4) ◽  
pp. 888-900 ◽  
Author(s):  
Thomas Nemeth ◽  
Andreas Bubert ◽  
Jan N. Becker ◽  
Rik W. De Doncker ◽  
Dirk Uwe Sauer

2020 ◽  
Vol 69 (10) ◽  
pp. 10469-10483
Author(s):  
Mohammad Veysi ◽  
Jamshid Aghaei ◽  
Mokhtar Shasadeghi ◽  
Reza Razzaghi ◽  
Behrooz Bahrani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document