Study on 6-DOF puma robot based on theory of virtual compound joint

Author(s):  
Jianguo Luo ◽  
Zehao Bu ◽  
Jianyou Han
Keyword(s):  
Author(s):  
Gim Song Soh ◽  
J. Michael McCarthy

In this paper, we use seven-position synthesis to add four TS constraints to a TRS serial chain robot and obtain a two degree-of-freedom spatial eight-bar linkage. The TRS chain is an elbow manipulator, similar to a PUMA robot. We synthesize a TS dyad to connect the base of the robot to its forearm, and then we synthesize three TS dyads that connect the upper arm of the robot to its end-effector. The result is a two degree-of-freedom spatial eight-bar linkage that moves through seven prescribed positions. It consists of a TRST loop supporting a 3TS-RS platform, which we denote as a TS-TRS-3TS spatial linkage. We formulate and solve the design equations for the TS dyads, and analyze the resulting eight-bar linkage. An example demonstrates our results.


2015 ◽  
Vol 66 (5) ◽  
pp. 270-276 ◽  
Author(s):  
Fouad Haouari ◽  
Bali Nourdine ◽  
Mohamed Segir Boucherit ◽  
Mohamed Tadjine

AbstractA new robust control procedure for robot manipulators is proposed in this paper. Coefficients diagram method controllers CDM and Backstepping methodology are combined to create the novel control law. Two steps of backstepping on the resulting system are used to design a nonlinear CDM-Backstepping controller. Simulations on a PUMA robot including external disturbances, parametric uncertainties and noises are performed to show the effectiveness and feasibility of the proposed method.


2007 ◽  
Vol 8 (12) ◽  
pp. 1962-1970 ◽  
Author(s):  
M. Farooq ◽  
Dao-bo Wang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document