Research on steering Gear electric loading System based on fuzzy Adaptive PID algorithm

Author(s):  
Di Chen ◽  
Kaijun Liao ◽  
Kun Qian ◽  
Cong Liu
Author(s):  
James Waldie ◽  
Brian Surgenor ◽  
Behrad Dehghan

In previous work, the performance of PID plus an adaptive neural network compensator (ANNC) was compared with the performance of a novel fuzzy adaptive PID algorithm, as applied to position control of one axis of a pneumatic gantry robot. The fuzzy PID controller was found to be superior. In this paper, a simplified non-adaptive fuzzy algorithm was applied to the control of both axes of the robot. Individual step results are first shown to confirm the validity of the simplified fuzzy PID controller. The fuzzy controller is then applied to a sinuosoidal tracking problem with and without a fuzzy PD tracking algorithm. Initial results are considered to be very promising. Future work requires developing an adaptive version of the controller in order to demonstrate robustness relative to changing tracking frequencies and changing supply pressures.


2020 ◽  
pp. 002029402096213
Author(s):  
Yang Shui ◽  
Jianli Wei ◽  
Jie Yan

In the hardware-in-the-loop simulation, the goal of electric loading is to realize the accurate tracking of the torque signal and test the performance of the aircraft actuator system. For some high dynamic aircraft, it is necessary to reduce the influence of the surplus torque to increase the system frequency band. This paper introduces a new electric loading system which adopts a double-loop servo motor as the torque loading mechanism. It applies two loops to track the position of the rudder and the aerodynamic load spectrum respectively. For the purpose of reducing the disturbance between two loops of the scheme, a two-DOF H∞ robust controller is designed, which improves the robustness of the system effectively. The simulation results show that the new system increases the upper limit of 25 Hz frequency band of the traditional single-loop system with PID control to the maximum of 40 Hz. The double-loop system thereby meets the technical requirements of the hardware-in-the-loop simulation experiment for high dynamic aircrafts.


2013 ◽  
Vol 303-306 ◽  
pp. 1666-1673
Author(s):  
Chong Dong He ◽  
Hai Chen Qin ◽  
Jian Kui Chen

For the pick-and-place operations of GDL, this paper presents and obtains the control system model using system identification method, and analyzes three distinct stages for the motion characteristics in pick-and-place operations. To satisfy the stick requirements for contact force control, a force controller based on fuzzy adaptive PID algorithm and a position controller based on feed-forward control are presented and designed. Simulations are carried out to verify the feasibility and effectiveness of the proposed control method. The above control strategies and methods are applied to pick up and place GDL. They can also be extended to the pick-and-place operations of the chips and other filed, which has broad application prospects.


2013 ◽  
Vol 579-580 ◽  
pp. 818-822
Author(s):  
Xiang Zhang ◽  
Guang Lin Wang ◽  
Xu Dong Pan ◽  
Hai Bing Xie

The disturbance torque which is caused by the interference of the motor position has observably impact on accuracy of the loading system. According to unstable loading channel and disturbance torque, this paper use a complex control algorithm of differential forward PID control and feed-forward compensation. At the end of this paper, the simulation analysis results show that the feed-forward compensation can observably eliminate the influence of the disturbance torque, and improve the accuracy of the loading system.


Sign in / Sign up

Export Citation Format

Share Document