Packet dropping probability determination for PRMA systems with data

Author(s):  
P.J.E. Jeszensky ◽  
J.A. De Lima
2001 ◽  
Vol 02 (01) ◽  
pp. 69-84
Author(s):  
RONG-JAYE CHEN ◽  
TING-YU LIN ◽  
YI-BING LIN

This paper describes a threshold-based wake-up mechanism to reduce the battery power consumption of a mobile data handset. The threshold approach switches the system into the sleep mode when the memory queue for arriving packets is empty, and switches on the system when the number of packets in the memory queue is above a threshold value. We propose several adaptive schemes capable of dynamically selecting the threshold value for the threshold approach. An adaptive algorithm adjusts the threshold value based on a pre-defined packet-dropping probability, for which the switch-on rate is kept reasonably small to maintain the actual packet-dropping probability as close as the pre-defined value. Two strategies are used in the adaptive algorithm to adjust the threshold value: binary-division and fixed-amount. Two calculation strategies are considered to measure the packet-dropping probability: window-averaging and leaky-bucket integration (LBI). Our study indicates that the binary-division strategy outperforms the fixed-amount strategy in adjusting the threshold value. Furthermore, with proper setting, the LBI strategy outperforms the window-averaging strategy.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
S.O. Hassan ◽  
A.O. Oluwatope ◽  
C. Ajaegbu ◽  
K-K.A. Abdullah ◽  
A.O. Olasupo

The Random Early Detection (RED) algorithm has not been successful in keeping the average queue size low. In this paper, we an improved RED-based algorithm called QLRED which divides the dropping probability function of the RED algorithm into two equal segments. The first segment utilises a quadratic packet dropping function while the second segment deploys a linear packet dropping function respectively so as to distinguish between light and high traffic loads. The ns-3 simulation performance evaluations clearly showed that QLRED algorithm effectively controls the average queue size under various network conditions resulting in a low delay. Replacing/upgrading the RED algorithm in Internet routers requires minimal effort since only the packet dropping probability profile needs to be adjusted.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hussein Abdel-Jaber

Congestion is a key topic in computer networks that has been studied extensively by scholars due to its direct impact on a network’s performance. One of the extensively investigated congestion control techniques is random early detection (RED). To sustain RED’s performance to obtain the desired results, scholars usually tune the input parameters, especially the maximum packet dropping probability, into specific value(s). Unfortunately, setting up this parameter into these values leads to good, yet biased, performance results. In this paper, the RED-Exponential Technique (RED_E) is proposed to deal with this issue by dropping arriving packets in an exponential manner without utilizing the maximum packet dropping probability. Simulation tests aiming to contrast E_RED with other Active Queue Management (AQM) methods were conducted using different evaluation performance metrics including mean queue length (mql), throughput (T), average queuing delay (D), overflow packet loss probability (PL), and packet dropping probability (DP). The reported results showed that E_RED offered a marginally higher satisfactory performance with reference to mql and D than that found in common AQM methods in cases of heavy congestion. Moreover, RED_E compares well with the considered AQM methods with reference to the above evaluation performance measures using minimum threshold position (min threshold) at a router buffer.


2019 ◽  
Vol 19 (02) ◽  
pp. 1950004
Author(s):  
HUSSEIN ABDEL-JABER ◽  
ABDULAZIZ SHEHAB ◽  
MOHAMED BARAKAT ◽  
MAGDI RASHAD

Controlling congested router buffers of a network has a crucial role in improving network’s performance. This paper proposes a novel Active Queue Management (AQM) method named Improved Gentle Random Early Detection (IGRED) that based on GRED algorithm, which counted as one of the popular AQM methods. The proposed is mainly developed to overcome the problems faced with classic GRED. The initial packet-dropping probability depends on several parameters such as the average queue length, maximum value of packet dropping probability, minimum and maximum thresholds, etc. IGRED reduces its reliance on the GRED’s parameters through shrinking these parameters. The results shows, when congestion is taken place, the proposed IGRED provides more satisfactory performance with reference to mean queue length, average queuing delay, and overflow packet loss probability.


IEEE Micro ◽  
2020 ◽  
pp. 1-1
Author(s):  
Cristina Olmedilla ◽  
Jesus Escudero-Sahuquillo ◽  
Pedro Javier Garcia-Garcia ◽  
Francisco Alfaro-Cortes ◽  
Jose L. Sanchez-Garcia ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4835
Author(s):  
Ali Bemani ◽  
Niclas Björsell

The availability of wireless networked control systems (WNCSs) has increased the interest in controlling multi-agent systems. Multiple feedback loops are closed over a shared communication network in such systems. An event triggering algorithm can significantly reduce network usage compared to the time triggering algorithm in WNCSs, however, the control performance is insecure in an industrial environment with a high probability of the packet dropping. This paper presents the design of a distributed event triggering algorithm in the state feedback controller for multi-agent systems, whose dynamics are subjected to the external interaction of other agents and under a random single packet drop scenario. Distributed event-based state estimation methods were applied in this work for designing a new event triggering algorithm for multi-agent systems while retaining satisfactory control performance, even in a high probability of packet drop condition. Simulation results for a multi-agent application show the main benefits and suitability of the proposed event triggering algorithm for multi-agent feedback control in WNCSs with packet drop imperfection.


Sign in / Sign up

Export Citation Format

Share Document